
ESTIMATION OF THE PROBABILITY DENSITY

FUNCTION OF END-TO-END DELAYS IN

WIRELESS SENSOR NETWORKS
- TECHNICAL REPORT -

Ramon Serna Oliver
Technische Universität Kaiserslautern

Chair of Real-Time Systems
Kaiserslautern, Germany

serna oliver@eit.uni-kl.de

January 2009



Abstract

The nature of Wireless Sensor Networks (WSN) prevents applying classic real-
time methods unless restrictive assumptions are taken about the participating en-
tities. Thus, for applicability in realistic deployments alternative methods capable
of offering meaningful Quality of Service (QoS) based on realistic assumptions
are needed.
This technical report presents an approach to estimate probabilistic timeliness
guarantees of end-to-end message delivery delays in WSN. Each node computes
at run-time local statistics about its message forwarding latency with low com-
putational and memory requirements. The composition of this local information
is used at run-time to construct a metric which estimates the probability density
function (pdf ) of the end-to-end latency of a path. This metric benefits adaptive
QoS as it is constantly updated at run-time and reflects the actual network status.
Simulation results underline the accuracy of the method.



Chapter 1

Introduction

1.1 Basic concepts
Wireless Sensor Networks (WSN) are formed by a set of resource constrained
nodes communicating via hop-by-hop message forwarding and a small set of data
sinks. Characteristics of WSN are of high variability among different application
domains. For instance, size of the network and density of nodes are two param-
eters with a great variability, as well as the mobility of nodes and exposure to
ambient phenomenon.
There are, however, a number of restrictions common in WSN deployments.
These include the unreliability of their links [18] and the absence of stationary
relays, as well as unknown network topology. These, together with strong energy
constraints represents a major challenge to provide any sense of timeliness guar-
antees.

1.2 Challenges
Existing real-time methods targeting timeliness guarantees in different sets of
wireless networks do not apply in the case of WSN. For instance, strategies based
on resource reservations [12] would over-constrain the network capacity up to the
point of loosing feasibility.
Classic methods based on hard real-time (HRT) demand deterministic behavior
at each of the network layers, which is only possible under the assumption of
ideal environments [6]. For example, at the MAC layer, bounded delays might
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be achieved by means of periodic sensing of the medium and neighborhood syn-
chronization, which is often not affordable in terms of energy. Similarly, at the
routing level, global knowledge of the network topology (i.e. routing table) does
not fit in the limited memory capacity of a node. On top of this, assumptions of
perfect channel conditions are common and represent the grounds for many exist-
ing approaches. Unfortunately, WSN have proved to present a high bit error rate
(BER) and due to their application domains, a higher exposure to environmental
phenomenon than classic wireless networks (e.g. Wi-Fi).
Methods based on queuing theory answer whether a message can or cannot meet
its deadline based on is service and/or inter-arrival times. However, offline esti-
mations of this parameters are not accurate, hence need to be tuned at run-time.
The large number of limitations that prevent bounded end-to-end delays to be
guaranteed in real WSN deployments suggests a different approach.

1.3 Introduction to the presented approach
In this technical report we present a probabilistic metric to evaluate end-to-end
timeliness performance at run-time. This metric estimates the probability density
function (pdf ) of the end-to-end latency of any given routing path. The required
computations demand little processing power as well as memory capacity and is
continuously updated to reflect the change over time of the network status. More-
over, previous knowledge of the network status is not needed.
The accurate monitoring of the timeliness performance introduced by this metric
can be used to calibrate off-line models or given to the application layer to re-
ceive feed-back about the network performance. We believe that the simulation
results presented later in this paper show convincing arguments of its applicability.

1.4 Structure of this document
The rest of the paper is organized as follows: Section 2 explores the related work
in this field. Section 3.1 describes the construction of the timeliness monitoring
metric, which is later validated in Section 4.1. Finally, Section 5.1 concludes the
paper.



Chapter 2

Related work

Ongoing research is carried out in this area at different levels.

2.1 Routing protocols
At the routing level, [5] and [9] assign velocities to messages which must be kept
in order to fulfill their timeliness requirements. However, both assume static net-
works and nodes equipped with localization capabilities. In [13] delay guarantees
are provided at the expense of limiting the length of routing paths.

2.2 MAC protocols
At the MAC level, [4] achieves hard real-time guarantees given an hexagonal
topology of static nodes. This requirement is later relaxed in [16] although it
still relies on static nodes. Besides, both papers are built on the assumptions of
bounded network density and optimum communication conditions.
Much of the existing research is based on TDMA scheduling of neighboring nodes
(e.g. [8]). Although valid results are obtained in controlled environments, the
common restriction of this methods is the assumption of absence of network er-
rors, which might cause retransmissions and jeopardize the transmission schedule.
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2.3 Schedulability analysis
[1] approaches a sufficient schedulability condition to guarantee end-to-end delays
in multi-hop WSN under specific assumptions on the message transmission times
and channel transmission speeds as well as network density and path lengths.

2.4 Queuing theory
[10] makes use of queuing models to determine the expected transmission latency
of messages on each hop. This translates into a traffic regulation mechanism to
drop messages without expectations to meet their deadlines. Additionally, under
unstable conditions, it estimates the PDF of the delay distribution with a Gaussian
distribution, although little motivation is given to justify the choice.



Chapter 3

Probabilistic approach

3.1 Timeliness monitoring
The objective of timeliness monitoring is to build a metric which, at run-time,
evaluates the timeliness performance of an end-to-end path. However, we argued
before in this paper that an accurate end-to-end delay estimation (i.e. guarantee)
is not feasible due to the principles of WSN. Therefore, we introduce probabilistic
analysis, such that the metric reflects an estimated probability of the end-to-end
latency of a path.
This metric can be used at different levels depending on the network strategy. A
routing protocol can be set to propagate this information towards the sink and/or
back to the source in order to adjust the routing decisions to the quality of the
path. Similarly, an application can decide on the strategy to follow if the observed
metric does not satisfy its timeliness requirements. And at a different level, path
discovery strategies can benefit of this metric at the time to decide among a num-
ber of options to build a routing tree.
The focus of this paper is to validate and evaluate the accuracy of the metric to
represent the current status of the network in terms of timeliness performance. Ex-
isting routing protocols can be adapted to make use of this metric and take routing
decisions based on the probability of end-to-end delays.

3.1.1 Notation and definitions
A WSN can be represented as a graph G(N, L) formed by a set of nodes N and a
set of single-hop links L. Two nodes ni, nj ∈ N are directly connected at a given
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time if there is a link l ∈ L, l = (ni, nj) such that ni and nj can send and receive
messages from each other. S ⊂ N is the subset of sinks. Sinks might outperform
nodes with respect to resources and energy availability.
A [routing] path rpn1,nq is a sequence of links (n1, n2)..(nq−1, nq) such that each
intermediate node in the path is directly connected to the next one, thus providing
a multi-hop link between the first node (source) and the final node (destination).
A path s is contained in another path p if all the links belonging to s also belong
to p. In that case, we define s as a segment of p. The length of a path is equal to
the number of links belonging to it (hence, |rpn1,nq | = q).

3.1.2 Probabilistic estimation of end-to-end delays
Information regarding end-to-end timeliness performance is crucial for time sen-
sitive applications. In this paper we target wide-area WSN such as those related
to environment monitoring (e.g. fire detection, structural monitoring of build-
ings, etc.) with specific timeliness sensitive data acquisition (e.g. fire or intrusion
alarms, structural damage, etc.).
Routing paths are built by the routing protocol to provide a link between the sen-
sor node and the data collector (sink). In such scenarios, nodes will continuously
produce data at a certain frequency, and hence the paths are likely to be re-used for
a certain period of time. During the path building procedure, a routing protocol
needs to decide among multiple paths based on predefined criteria. The proba-
bilistic timeliness metric fits well in this procedure as it can originate paths with
higher probability of performing well.
Moreover, while sending data through a path, the metric reflects the change over
time of the timeliness performance, hence aiding on the decision of re-routing or
not. Furthermore, the application can benefit of this information as, in fact, it
reflects the probability of achieving its timeliness requirements.

Single-hop forwarding latency

In the simplest case, a path is composed of only one link (that is, |rp| = 1). In
this case, given two hops n and s such that there exists a link l = (n, s), we define
Dn as the random variable (RV) which characterizes the transmission latency of
a message from n to s and p(Dn) as the pdf such that pn(ε) = P (Dn ≤ ε); the
probability that n introduces a delay of at most ε in forwarding the message to the
next hop.
The transmission latency of a message δ is considered as the time between the



message entering a node tin (either because the application layer sets a new mes-
sage to be sent, or because the MAC layer receives a message which has to be for-
warded), and the reception of an acknowledgement from the receiver tack. Notice
that this calculation is pessimistic as it introduces the additional time to receive
the acknowledgment. Depending on the MAC protocol this might be relatively
small and can be neglected, but in any case it should be possible to estimate this
time as a constant ρ. Hence,

δ = tack − tin − ρ (3.1)

The above calculation is done at each hop every time a message goes through,
thus an increasing sequence of values ρ0, .., ρk, is generated at each node. Each of
these values represents a sample of the random variable D for the given hop.
If the distribution of D was known, finding out the expected value and its proba-
bility or the probability of any given delay would be reduced to trivial. Unfortu-
nately, at this point we can not extract any conclusion about the distribution of D.
To proceed, we calculate the sample mean x̄ and sample variance s2 that char-
acterize this distribution. For short paths (i.e. a few links), x̄ should be a good
estimator of the latency and s2 provide a rough indicator of the link quality: hops
with high variance may be experiencing a higher number of retransmissions.
We propose the exponential weighted moving average (EWMA) [3] as a mean
to obtain this calculation with little memory utilization and low CPU overhead
(Equation 3.2). A parameter α (0 ≤ α ≤ 1) is set to weigh the actual mea-
surements with respect to the past, hence smoothing the consequences of the past
trends and possible aberrations.

x̄∗n = αδ + (1− α)x̄∗n−1

s2
n
∗

=
α

2− α
s2

n (3.2)

Equation 3.3 provides the sample variance s2 with low memory requirements.

s2
n =

n− 1

n
s2

n−1 +
n− 1

n
(x− x̄n)2 (3.3)

Equation 3.3 and Equation 3.2 are updated at each node every time a message is
forwarded through it.



3.1.3 Averagin parameters
Estimation of end-to-end latency

The end-to-end latency of a path rp is also a RV, Drp, formed by the composition
of the delays of its intermediate links:

Drp =
∑

∀(i,j)∈rp

D(i,j) (3.4)

and,
pDrp(τ) = P (Drp ≤ τ) (3.5)

Then, assuming that the pdf s of the RVs have the same distribution, non-negative
and mutually independent, it is possible to apply the Central Limit Theorem (CLT)
[2] to characterize the pdf of the path as a normally distributed1 RV, Drp ∼
N(µDrp , s

2
Drp

) [17]. The assumption of all RVs being mutually independent is
taken as a premise at this point and discussed in Section 3.1.3.

µ = x̄Drp =
∑

∀l∈rp

x̄∗Dl

σ2 = s2
Drp

=
∑

∀l∈rp

s2
n
∗
Dl

(3.6)

Therefore, under these circumstances the probability introduced in Equation 3.5
converges to

pDrp(τ) =
1√
2π

∫ d

−∞
e

y2

2 dy

τ =
Drp − µDrp

σDrp

(3.7)

In this case, the expected value for the end-to-end latency of rp is E(Drp) = µDrp .

Assumption of independence

The assumption of independence of the RV is necessary to apply the CLT. This
might seem to be a strong assumption and indeed, it comes at a certain risk. Mes-
sage latencies across a network might present dependencies under certain circum-
stances forcing events to happen in a non-independent way (i.e. E[Va, V b] 6=

1Although the CLT is commonly applied to large number of samples, an argumentation about
good approximations for smaller sums of RVs is given in [11].



E[Va] · E[Vb]]). However, we initially took this assumption as a premise and ex-
pected that the spatial distribution of nodes and the typical low throughput of
WSN would minimize this possibility.
After performing simulations, we believe that the dependencies are not of rele-
vance in the general case and only in situations of high network saturation they
might arise (e.g. packet dropping due to buffer overflows). The evaluation in
Section 4.1 will show whether this assumption was appropriate and if not, how
significant are its effects.



Chapter 4

Experimental results

4.1 Evaluation
To evaluate the estimation metric we performed extensive simulations with the
simulation tool Omnet++ [15]. We chose WiseMAC [7] as an energy-efficient
MAC protocol specially design for WSN.

4.1.1 Scenario
We simulated traffic messages from a sender node n to a sink s with the inter-
ference of cross-traffic coming from neighbor nodes as depicted in Figure 4.1. A
common setup for each simulation run was chosen with variation in the length of
the path and cross-traffic parameters:

• different experiments with path length: |rp| = {5, 10},

• source node n sending periodic messages to sink with T = 30s,

• messages sent from n to s capture the aggregation of the estimated parame-
ters at each intermediate link (Equation 3.6).

a value α = 0.9 is selected.

• the real end-to-end transmission latency experienced by each message is
captured at s,

• each hop in the path has two neighbors, forwarding cross traffic to it follow-
ing a Poisson distribution with parameter λ = {60s, 120s, 480s, 1200s},
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Figure 4.1: Scenario

• radial distance between nodes following a uniform distribution with range
8 to 20 meters,

• radio interface according to the specification of the RFM TR1100 radio
transceiver.

Hence, the results of eight different simulation runs with the combination of pa-
rameters λ and |rp| are presented. Each run simulated a period of 10 days. Notice
that the process of building the routing path is not considered at this moment. The
purpose of the simulations is to evaluate the validity of the method to obtain the
pdf of the end-to-end latency distribution.

4.1.2 Evaluation criteria
To evaluate the application of the CLT with the assumptions of independence and
of equally distributed RV at each intermediate hop, we analyze the real and esti-
mated pdf of the routing path latency. Under static network conditions (i.e. no



transmitted message), x̄ and s2 would be constant at each hop. Therefore, a suc-
cession large enough of messages transmitted across the path would suffice to
estimate the shape of its distribution function. This would give an estimation of
the real distribution function of the end-to-end latency.
In such case, the real distribution could be compared to the Normal distribution
with parameters µ and σ2 (Equation 3.6) with the parameters captured by the mes-
sages (i.e. sum of x̄ and s2 at each intermediate hop).
Unfortunately, the construction of the metric invalidates this option. Each time
that a message is forwarded by a hop, it recalculates its x̄ and s2. Thus, if a mes-
sage is forwarded by any of the intermediate links of the path, it will produce a
change in the final end-to-end parameters. In other words, the network conditions
are varying every time that a message is being forwarded.
Therefore, for each message going through the path, we obtain a measured end-to-
end delay (real) and a set of parameters µ and σ2. However, with only one sample
of the real distribution we cannot extract anything about its approximation to the
Normal distribution, and as each real measurement has been taken at different in-
stants of time, hence different network status, it is not possible to approximate the
real distribution with the whole succession.
To overcome this problem we perform two complementary tests:
Test 1. Normalize each sample of the real distribution to the standard Normal
distribution N(0, 1): If X ∼ N(µ, σ2), then Z = X−µ

σ
, where Z ∼ N(0, 1).

This way, instead of comparing each individual sample to a N(µ, σ) with different
parameters, we can compare all samples to a N(0, 1). Thus, the expectation is that
the distribution of the succession of normalized samples approximates a N(0, 1).
Test 2. Compare the number of “hits” of each interval determined by the dis-
tance σ from the center point (µ). This is known to be around 68%, 27%, 4.2%
and 0.2% respectively for the intervals I1 = (−σ, σ), I2 = (−2σ,−σ) ∪ (σ, 2σ),
I3 = (−3σ,−2σ) ∪ (2σ, 3σ) and I4 = (−∞,−3σ) ∪ (3σ,∞). If the estimated
distribution is accurate, the number of samples falling in each of these intervals
should follow a similar proportion.

4.1.3 Simulation results
To analyze the simulation results, we first show two representative cases. For
the experiment with |rp| = 5, Figure 4.2 shows the histogram and probability
density function after normalization compared to the pdf of the standard Normal
(N(0, 1)). The depicted graphics have been cropped at the interval (−4, 4).



At first sight, two questions arise: the difference between the two curves at the
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Figure 4.2: Normalized histogram and estimated pdf vs N(0,1), n=5

central point and the higher tail on the right side. Both effects are related to each
other and can be explained by the nature of the experiment measurements. In fact,
the values represented come from measured end-to-end delays. This necessarily
introduces a tail effect, as there is a clear limit on the possible values from the left
side (i.e. time delays cannot be negative) but none on the right side.
Looking at the range of absolute values, we see that with a mean sample value of
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Figure 4.3: Normalized histogram and estimated pdf vs N(0,1), n=10

6.5ms very few messages achieved a delay less or equal than 2ms and the distance
between the minimum value and the mean is approximately of 5ms. However, on
the right side, this distance goes up to around 34ms, with a maximum value close
to 40ms.

Notice that the α value performing the EWMA is responsible, in a certain way,
of this effects. A lower α acts as a filter for higher sampled values and hence,
reduces the tail on the right side. However, this would also affect the sample vari-
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Figure 4.4: Estimated pdfs vs N(0,1) with path length 5

ance s2 as values would get closer to each other. Thus, a side effect would be a
distortion on the estimated distribution which would look thinner. On the other
hand, higher values of α would reduce the smoothing effect of the EWMA and es-
timate a better value for the sample variance. This would definitely reflect on the
peak of the estimated distribution, although, at the same time, produce a thicker
distribution shape.
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Figure 4.5: Estimated PDFs vs N(0,1) with path length 5

Figure 4.3 shows the same results for the case of |rp = 10|. This case does
not differ much from the previous one, except for the fact that it is noticeable that
the estimated pdf is slightly more centered than it was in the previous case. This
again, is not an unexpected result as it was already presumed that longer paths
would produce better estimated distributions. However, it is remarkable that even
with paths as short as 5 hops it is possible to obtain relatively accurate results.
Figure 4.4 and Figure 4.5 show respectively the pdf and probability distribution
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Figure 4.6: Estimated pdfs vs N(0,1) with path length 10

function (PDF) of all four cases with |rp| = 5 and variations in the cross traffic (λ
parameter).
As can be observed, the accuracy increases proportionally to the cross-traffic pa-
rameters. This is due to the fact that the higher the amount of messages going
through the network is, the more frequently intermediate nodes refresh their local
estimations. In other words, if the traffic is too low, the estimated values at the
arrival of a message loose accuracy by the time that the next message is received.
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Figure 4.7: Estimated PDFs vs N(0,1) with path length 10

In Figure 4.5, the “lower peak” described before can be appreciated from the point
of view of the estimated probability. The higher part of the curve is visibly bellow
the reference curve, which means that the estimation becomes pessimistic (i.e. the
method will predict a lower probability for delays above the expected end-to-end
delay). However, the same does not happen, except for the case of very low traf-
fic, in the lowest part of the curve. This means that the estimated probability for
end-to-end delays bellow the expected value do not over-estimate the capacity of



the path.
Figures 4.6 and 4.7 repeat the same experiment with a path length |rp| = 10.

λ I1 I2 I3 I4

N(0,1) (68%) (27%) (4.2%) (0.2%)
60 62.2% 24.6% 7.1% 6.1%
120 61.1% 27.1% 7% 4.8%
480 53.3% 27% 8% 7.7%
1200 50.8% 25.6% 11.9% 11.8%

Table 4.1: Percentage of hits per σ interval with path length 5

λ I1 I2 I3 I4

N(0,1) (68%) (27%) (4.2%) (0.2%)
60 62.4% 24.9% 9.2% 3.5%
120 62% 27.1% 7.4% 3.6%
480 61.4% 28.5% 6.9% 3.2%
1200 60.7% 28.9% 7.6% 2.8%

Table 4.2: Percentage of hits per σ interval with path length 10

In this case, a general better fitting of the estimated curves, as suggested in Fig-
ure 4.3, is visible. It has been already argued that longer path are expected to
produce more accurate results. However, the curve with λ = 60 draws the atten-
tion both for its accuracy with respect to the shape as well as for appearing to be
shifted to the right. In Figure 4.7 this shift clearly shows a constant underestima-
tion of the end-to-end delay (i.e. pessimistic predictions).
The explanation for this effect lies on the higher amount of missed acknowledg-
ments for this experiment. When an acknowledgment is missed, the sender con-
siders that the message was not received, and hence proceeds with its retransmis-
sion. However, the message was properly delivered and the receiver is ready to
forward it further away. The result is that the calculated latency of the message
at the sender node is notably worse than the real delay experienced by the mes-
sage. Such phenomenon are expected to happen in WSN, and this result shows
that measures must be taken to countermeasure its effects.



Table 4.1 and Table 4.2 present the results for the second test with the reference
to the standard Normal in brackets. Again, the tail effect can be seen as the interval
I4 receives significantly more hits than expected. Similarly, interval I1 reflects a
lower percentage of hits, which agrees with the previous figures.



Chapter 5

conclusions

5.1 Final remarks
In this paper we presented a new approach to obtain a probabilistic timeliness per-
formance metric in Wireless Sensor Networks. A statistic analysis of low compu-
tational requirements is applied at run-time on each node to analyze its message
forwarding latency. This information is used to construct a metric which reflects
the estimation of the probability density function of the end-to-end latency of a
routing path. Simulations results for a set of different scenarios underline the ac-
curacy of this method.
The paper motivates the use of probabilistic approaches instead of methods aiming
at hard real-time by means of adding constraints and hence reducing its applica-
bility.

5.2 Future work
Future work in this area includes the consideration of global energy consumption
(i.e. energy-timeliness trade-offs), study of possible node adjustments to achieve
local improvements of metric values (e.g. back-off exponents, size of preambles,
etc) as well as the application of the probabilistic timeliness metric in network
protocols.
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