
Poster Abstract: An Efficient Operating System Abstraction Layer
for Portable Applications in the Domain of

Wireless Sensor Networks

Ramon Serna Oliver, Ivan Shcherbakov, Gerhard Fohler
Chair of Real-Time Systems

TU Kaiserslautern

{serna oliver, shcherbakov, fohler}@eit.uni-kl.de

Abstract
Portability is a major concern in developing applica-

tions for embedded devices such as Wireless Sensor Net-
works (WSN). Abstractions of the hardware platform which
are introduced by the operating system (OS) make possible
to develop code independent of the hardware, which can be
reused in later deployments. However, the lack of standard
APIs for the variety of OS in the domain of WSN restricts
portability to those systems running the same OS.

We present on-going work on the design and development
of a portable operating system abstraction layer (OSAL),
which achieves a complete abstraction of the OS architecture
as well as a common API across multiple OS. Portability at
the application level is effectively achieved thanks to a com-
mon set of primitives which abstract the underlaying OS and
its particular architecture.

We provide argumentation to highlight the efficiency of
the OSAL and a general introduction to its features and de-
sign considerations. Moreover, we present a preliminary
evaluation of the current implementation, which has proven
to introduce minimal run-time overhead as well as negligible
increase on the software footprint.

Categories and Subject Descriptors
D.4 [Software]: Operating Systems

General Terms
Performance, Design

Keywords
Abstraction, Embedded, Operating System, WSN, API

1 Introduction
The increasing popularity of Wireless Sensor Net-

works (WSN) [1] and their expansion to new application do-
mains demand fast developments and quick integration of
software and hardware components. Enabling portability of
these components is a key issue which becomes essential for
efficient deployments of large and complex systems.

Typical hardware elements in WSN have evolved from
simple boards with minimal sensing and communication ca-
pacities to complex systems equipped with customized hard-
ware modules and advance architectures. Operating sys-

Copyright is held by the author/owner(s).
SenSys’09,November 4–6, 2009, Berkeley, CA, USA.
ACM 978-1-60558-748-6

tems (OS) play an important role in abstracting the under-
laying hardware architecture, which is exposed to the appli-
cations through the OS API. New hardware components can
be added to the platform (e.g. new sensor attached to an SPI
bus), existing hardware can be upgraded (e.g. exchange of
radio transceiver) or even the complete hardware platform
may be exchanged without requiring major modifications at
the application level.

Unfortunately, there is a broad number of OS targeting
the domain of embedded sensor networks (e.g. [2], [3], [4],
[5]), providing a common set of core functionalities and ser-
vices. For a particular deployment, the decision may depend
on external factors like, among others, support of the cho-
sen platform architecture (i.e. CPU family), availabilityof
drivers for sensors and/or communication buses, existence
of a network stack or particular protocols (e.g. 802.15.4),or
special characteristics of the OS (e.g. real-time scheduler).

There is, however, an implicit incompatibility between
different OS due to their different APIs. Applications are
design and implemented for a particular OS and their porta-
bility is reduced to those platforms supported by the OS. This
issue, which is not relevant for small-scale deployments be-
comes relevant in complex systems where the dependency
towards the particular OS API and architecture is larger.

2 OS Abstraction Layer
The definition of proper control mechanisms for the hard-

ware platform into software frameworks arise a number of
portability issues. The OS abstraction layer (OSAL) [6] is
designed to address these issues and diminish the conflicts
between different software and hardware platforms. In par-
ticular, it addresses the discrepancies among different OS
with respect to their functional API, hardware configura-
tion mechanisms, resource management and peripherals han-
dling.

The OSAL is an abstraction layer set on top of the OS,
which translates system primitives from the target operating
system into an unified API. Thus, application builders make
use of a common API and hence, portability among different
platforms is reduced to the re-implementation of the OSAL.
2.1 Core Implementation

The OSAL embraces the management of hardware con-
figurations and access to specific set-points which represent
a major hook to performance trade-offs. It defines a sub-
set of OS primitives which satisfies the basic application



Code size Initialized Non-initialized
Original 8192 10 446
OSAL 8200 (+8) 10 446

Table 1. Memory footprint for a simple application with
and without OSAL (in bytes)

builder’s requirements but at the same time, remain simple
to match most target OS. The resemblance of the subset to
a POSIX [7] OS API is motivated by the desire of reducing
the learning-curve as well as the preference of a neutral refer-
ence without specific features from any particular platform.

Minimal footprint and execution overhead is achieved
with advance compilation tools and techniques. Among oth-
ers, function level linking, in-line functions and extensive
use of macros to provide light function wrappers for the OS
native primitives. The main achievements of the OSAL are:
• unify basic data types and structures;
• unify API for primitives of same functionality;
• adjust equivalent primitives with different parameters,

parameters order or parameters types;
• extend non-equivalent primitives to perform equally;
• unify return values, error codes and system constants;
• provide unified APIs for non-existing extensions;
• abstract specific OS and hardware initialization phases.

2.2 Radio API
The radio API is a subset of the OSAL which abstract

internal structures and management of data packets. Its goal
is to abstract platform-specific details from the user and to
provide a transparent interface for dealing with packets.

As different OS use different structures for packet buffers
(some of them are fixed-size, some support variable length),
OSAL provides a unified preprocessor macro allowing to de-
clare such a structure, specifying its name and the desired
size. Specific OS size bounds are checked during compila-
tion time.

Particular attention has been given to the buffer manage-
ment for radio transmission and reception. For example,
MANTIS OS copies incoming packets into a fixed system-
maintained buffer (a packet is always received in the same
place and then can be copied by the application). The OSAL
enables direct access to the system buffers by means of a pre-
processor macro, which avoids costly and unnecessary mem-
ory operations.

3 Evaluation
We have successfully implemented the OSAL on top of

MANTIS OS and we are currently working on the FreeRTOS
port (see [8]). Moreover, OSAL is currently being exploited
in the development of a portable network stack for WSN [9].

The only overhead added by the current implementation
of the OSAL API on top of MANTIS OS, is of 8 bytes of
code for each application, which are due to the additional ini-
tialization function. Note that in cases where MANTIS did
not provide required functionalities (e.g. message-oriented
queues), the increase on the code size is bigger. However,
this is no longer considered overhead as new functionalities
were implemented.

Table 1 shows the byte size of a sample application
(blinking led) implemented with and without the OSAL.

4 Conclusions
Portability of application-level code is a major con-

cern in fast and efficient developments for Wireless Sen-
sor Networks. We present an Operating System Abstrac-
tion Layer (OSAL) to reduce the portability efforts of soft-
ware components between platforms. We provide argumen-
tation to highlight the efficiency of such abstraction layerand
present preliminary figures for the current implementation
on top of MANTIS OS [2]. A complete description of the
OSAL API can be found in [8].

Future and on-going work includes the development of
the OSAL on top of FreeRTOS [3] and the extension of the
API to support additional features.

5 Acknowledgments
This work is partially financed by the European Commis-

sion under the Framework 6 IST Project ”Wirelessly Acces-
sible Sensor Populations (WASP)”.

6 References
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci, “Wireless sensor networks: A survey,”Com-
puter Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] “MantisOS,” 2009. [Online]. Available: http://mantis.
cs.colorado.edu/

[3] “FreeRTOS,” 2009. [Online]. Available: http://www.
freertos.org/

[4] “Contiki OS,” 2009. [Online]. Available: http://www.
sics.se/contiki/

[5] “TinyOS,” 2009. [Online]. Available: http://www.
tinyos.net/

[6] A. Schoofs, M. Aoun, P. van der Stok, J. Catalano,
R. Serna Oliver, and G. Fohler, “On enabling portable
and time-controlled wireless sensor network applica-
tions,” in Proceedings of the 1st International Confer-
ence on Sensor Networks Applications, Experimenta-
tion and Logistics (SENSAPEAL09), Athens, Greece,
September 2009.

[7] M. A. Rivas and M. G. Harbour, “Evaluation of new
posix real-time operating systems services for small em-
bedded platforms,” inProceedings of the 15th Euromi-
cro Conference on Real-Time Systems (ECRTS), 2003.

[8] I. Shcherbakov and R. Serna Oliver, “The WASP OS
API.” [Online]. Available: http://rts-wiki.eit.uni-kl.de/
WASP/index.html

[9] “EU Framework 6 IST Project ”Wirelessly Accessible
Sensor Populations” (WASP),” 2006-2010. [Online].
Available: http://www.wasp-project.org/


