
An Operating System Abstraction Layer for Portable
Applications in Wireless Sensor Networks

Ramon Serna Oliver
Chair of Real-Time Systems

TU Kaiserslautern
Germany

serna_oliver@eit.uni−kl.de

Ivan Shcherbakov
Chair of Real-Time Systems

TU Kaiserslautern
Germany

shcherbakov@eit.uni−kl.de

Gerhard Fohler
Chair of Real-Time Systems

TU Kaiserslautern
Germany

fohler@eit.uni−kl.de

ABSTRACT
Portability of software modules is a major concern in appli-
cation development for Wireless Sensor Networks (WSN),
stressed by the typical lack of resources in embedded sys-
tems. Abstractions of the hardware platform which are in-
troduced by the operating system (OS) allow the develop-
ment of modules which can be reused in new applications.
However, the lack of standards in this domain, restricts the
chances to achieve efficient portability to those systems run-
ning on very similar platforms (e.g. same OS).
In this paper, we present an Operating System Abstrac-

tion Layer (OSAL), which unifies the OS architecture and
establishes a common API across multiple OS. Portability
of applications is effectively granted thanks to a common set
of primitives, which are independent of the underlaying OS
and its particular architecture.
We highlight the efficiency of the OSAL as well as detailed

description of its main features and design considerations.
We have implemented the OSAL on top of two well known
OS and performed extensive evaluations, which show that
it effectively reduces portability efforts at the expenses of
minimal run-time overhead as well as negligible increase of
memory footprint.

Keywords
Abstraction layer, API, Operating Systems, OS, Portability,
Wireless Sensor Networks, WSN, OSAL.

1. INTRODUCTION
The increasing popularity of Wireless Sensor Networks

(WSN) [1] and their expansion to new application domains
demand fast development and quick integration of software
and hardware components. Portability of software compo-
nents is a key issue, which becomes essential to achieve fast
deployments of large and complex systems [2].
Hardware platforms have evolved from simple boards with

minimal sensing and communication capacities to complex
systems equipped with customized hardware modules and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’10 March 22-26, 2010, Sierre, Switzerland.
Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

advanced architecture. Hence, operating systems (OS) play
an important role in abstracting the underlaying hardware
architecture, which is exposed to the software applications
through the OS API. New hardware components can be
added to the platform (e.g. new sensor attached to an SPI
bus), existing hardware can be upgraded (e.g. exchange of
radio transceiver) or even the complete hardware platform
may be exchanged without requiring major modifications at
the application level.

Unfortunately, there is a broad number of OS targeting
the domain of embedded sensor networks (e.g. [3], [4], [5],
[6]), providing a common set of core functionalities and ser-
vices. The choice for a particular deployment may depend
on external factors, support of the chosen platform archi-
tecture (i.e. CPU family), availability of drivers for sensors
and/or communication buses, existence of a network stack
or particular protocols (e.g. 802.15.4), or special character-
istics of the OS (e.g. real-time scheduler).

In this paper, we present an Operating System Abstrac-
tion Layer (OSAL), which embraces the management of hard-
ware configurations as well as access to specific set-points
that represent a major hook to performance trade-offs. OSAL
defines a subset of OS primitives which satisfies the basic
application builder’s requirements but at the same time, re-
mains simple to cover the API of most targeted OS. It is
designed to resemble a subset of a POSIX [7] OS API, with
the motivation of reducing the learning-curve as well as the
preference for a neutral reference without specific features
from any particular platform.

We implemented OSAL on top of two well-known OS for
sensor networks developed in C: MANTIS OS [5] and FreeR-
TOS [4]. At the moment, OSAL is designed to cover the
majority of thread-based OS , which offer better portability
support with respect to other event-based systems. Further
work may explore the extension to event-driven OS (e.g.
TinyOS).

Our analysis shows that OSAL introduces minimal run-
time overhead and negligible increase of memory footprint
while achieving efficient portability of applications. Typical
OS primitives to create tasks, mutexes and timers experience
no additional code size overhead (0 bytes) in MANTIS OS
and very low in FreeRTOS (i.e. less than or equal 12 bytes).
With respect to the footprint overhead of initialized and
non-initialized memory, OSAL has no impact at all in these
primitives.

The rest of this paper is organized as follows: Section 2
briefly explores related work in this area. Section 3 describes
the abstractions and principles of OSAL, while Section 4

presents an extensive evaluation based on the current im-
plementations. Finally, Section 5 concludes the paper.

2. RELATED WORK
Little work has been done towards the unification of the

existing variety of OS targeting sensor networks. Well es-
tablished standards like POSIX [7], including specific pro-
files for embedded systems, are too complex for the limited
availability of resources in typical sensor platforms.
Among the existing OS, we highlight the following for

their relevance to the current state-of-the-art:

Mantis OS
MANTIS OS [8] aims at a low memory footprint, easy to
program architecture, and support for preemptive multi-
ple threads. It follows a prioritized threaded programming
model similar to classic POSIX with a scheduler based on
priorities and a round-robin policy for those threads with
same priority.
The OS consists of a kernel with integrated scheduler,

a command server and device driver system. It supports
mutual-exclusion and semaphores. It also integrates a low-
level communications stack for serial and radio communica-
tion interfaces, including a MAC layer and a device abstrac-
tion layer that provides uniform access to devices. MANTIS
OS is mostly implemented in C and several ports exist for
different platforms.

FreeRTOS
FreeRTOS [4] falls in the category of a kernel rather than a
full operating system as generally understood. It supports,
among other features, prioritized and preemptive threads,
interrupt service routines (ISR), mutexes and queues and
dynamic memory allocation.
FreeRTOS favors simplicity and portability over optimiza-

tion. Nearly all the code is written in C, with only a few
assembler functions. The scheduler follows either a priori-
tized preemptive or cooperative scheduler policy, depending
on its configuration. In the former, tasks with the same pri-
ority share CPU time in a round robin fashion, while in the
latter context switches only occur if a task blocks or yields.

Contiki
Contiki [9] is an operating system designed for memory-
constrained environments, such as sensor networks. It is
built around an event-driven kernel [10], and features dy-
namic loading and unloading of individual programs and ser-
vices. It supports a full TCP/IP stack via the µIP library,
as well as programming abstractions via protothreads. Con-
tiki is implemented in C and has been designed to be easily
portable to new platforms.

TinyOS
TinyOS [6] is a popular run-time system specifically designed
for networked sensors. Its wide adoption is one of its main
strengths together with the availability of a rich library of
networking and application components.
TinyOS implements an event-driven execution paradigm

where every execution is triggered by some external event
interrupt. It provides physical device abstractions as a con-
ventional OS does. The programming model exposed by
NesC incorporates the event-driven execution, the flexible

concurrency model, and the component-oriented application
design of TinyOS. However, it requires the programmer to
adopt a very careful programming policy which may jeopar-
dize the ability of reusing code in various deployments.

Virtual Machines
An alternative approach to achieve abstraction of the OS
and platform architecture is to develop on top of virtual
machines (VM). Squawk, Maté [11], Sentilla [12] and other
VM are build to target sensor networks and small embedded
systems. Despite the benefits of VM in terms of quick de-
ployment and maintainability, we argue that the overhead
in terms of execution and memory utilization represent a
serious inconvenience for complex deployments.

3. OSAL OVERVIEW
The establishment of proper control mechanisms for the

hardware platform into software frameworks brings up a
number of portability issues. OSAL [2] has been designed
to address these issues and diminish the conflicts between
different software and hardware platforms. In particular, it
addresses the discrepancies among different OS with respect
to their functional API, hardware configuration mechanisms,
resource management and handling of peripherals.

OSAL is an abstraction layer designed to be placed on
top of an OS, which translates system primitives from the
original operating system into an unified API. Thus, appli-
cation builders are able to use a common API which has
the advantage of dramatically reducing portability efforts in
later deployments. Our experience shows that after the first
implementation, porting OSAL to new platforms requires a
relatively small effort compared to a large scale deployment.

OSAL achieves minimal footprint and execution overhead
by using advanced compilation tools and techniques. Among
others, function level linking, in-line functions and extensive
use of preprocessor macros to provide light function wrap-
pers for the OS native primitives.

Main achievements of the OSAL include the unification of
basic data types and structures, a common API to for system
primitives and return codes, extension or implementation
of non-compliant or missing primitives, and abstraction of
specific OS and hardware initialization procedures.

3.1 OSAL API
OSAL API covers the basic needs to develop applications

in the domain of sensor networks. We highlight the most
representative parts of its design with appropriate examples
for each case below.

OS initialization
Start-up initialization is one the most system-dependent fea-
tures in any OS. For example, FreeRTOS leaves this respon-
sibility to the entry function, which normally creates some
tasks before calling vTaskStartScheduler() to trigger the
OS scheduler. This primitive does not return, and hence the
initial task itself is permanently suspended.

In contrast, MANTIS OS initializes the scheduler before
calling the application-defined entry function (void start()),
where any additional required task can be created.

OSAL defines a initialization function (wos_main()) which
always runs after the scheduler has been initialized. Any
task created in this function will be scheduled immediately.

Mantis OS

void start() {

// Application initialization code

// Application main thread

}

FreeRTOS

void MainThread() {

// Application main thread

vTaskDelete(xTaskGetCurrentTaskHandle());

}

int main() {

vPortInitialize();

// Application initialization code

xTaskCreate(MainThread, NULL, main_stack_size,

NULL, main_priority, NULL);

vTaskStartScheduler();

return 0;

}

OSAL

wos_status wos_main(void) {

// Application initialization code

// Application main thread

return MAKE_STATUS(WOS_SUCCESS);

}

Table 1: System initialization of an empty applica-
tion in MANTIS OS, FreeRTOS and OSAL

Table 1 summarizes the initialization procedure for the
three systems.

Tasks
The OSAL API unifies the way in which parameters are
given to the OS and the particularities of each individual
system.
Creating a task using OSAL is done with the primitive

wos_task_create(thread_func, NULL), where the second
parameter can be either NULL or a pointer to an initialized
task_attr_t structure that allows specifying stack size and
priority explicitly.

Synchronization
Primitives to ensure mutual exclusion between concurrent
tasks are frequently used in embedded OS. OSAL provides
support for mutex, semaphores and message queues, which
cover most application requirements with respect to syn-
chronization and inter-task communication.
Table 11 shows the primitives for mutex handling of the

of the two analyzed OS for comparison with the OSAL API.
Note that the FreeRTOS synchronization API has several
critical drawbacks (e.g. impossibility to immediately wake
up a thread of the same priority which was waiting for a
semaphore). For this reason, we developed an additional
Advanced Synchronization Framework with similar syntax
which solved these issues.

Mantis OS

mos_mutex_t mtx;

mos_mutex_init(&mtx);

mos_mutex_lock(&mtx);

mos_mutex_unlock(&mtx);

FreeRTOS

xQueueHandle mtx = xQueueCreateMutex()

xSemaphoreTake(mtx);

xSemaphoreGive(mtx);

OSAL

wos_mutex_t mtx;

wos_mutex_init(&mtx);

wos_mutex_lock(&mtx);

wos_mutex_unlock(&mtx);

Table 2: Synchronization primitives in MANTIS
OS, FreeRTOS and OSAL

Software Timers
Software timers are of special importance in sensor network
systems as they allow implementation of time-outs as well as
periodic execution of functions, which are essential to any
networking protocol. Efficient implementations use hard-
ware timer interrupts to callback a given timer function.
This, however, implies a number of limitations due to the
execution within an interrupt context (ISR). Namely, that
interrupts are disabled while a software timer handler is
running and the “current task” context is undefined, which
causes that blocking functions cannot be used.

The following example shows how software timers are han-
dled in OSAL:

timer_t timer;

wos_timer_create(&timer, period, hdl_funct, context);

wos_timer_destroy(&timer);

Note, that FreeRTOS does not originally support software
timers. We implemented this functionality before porting
the OSAL API on top of FreeRTOS.

3.2 Message handling
Efficient handling of messages is vital to sensor applica-

tions. OSAL unifies the most relevant aspects regarding ra-
dio transmissions of messages. Namely, message structures,
buffers and radio API.

Packet buffers
As different OS use different structures for packet buffers
(e.g. some of them are fixed-size, some support variable
length), OSAL provides a unified preprocessor macro allow-
ing to declare such a structure, which specifies its name and
the desired size.

For example, OSAL provides procedures to declare packet
buffers and structures both for sending and receiving packets
(i.e. DECLARE_PACKET(name, max_size)). Particular con-
strains may appear due to native restrictions on the un-
derlaying OS. For instance, the parameter max_size must

be checked and a compilation error raised if it exceeds the
maximum supported size by the OS.

Radio API
The radio API is a subset of the OSAL which abstract in-
ternal structures and management of data packets. Packet
buffers can be both fixed or variable size, and can contain
(or not) several internal fields. The goal of the radio API
is to abstract platform-specific details from the user and to
provide a transparent interface for dealing with packets.
Particular attention has been given to the buffer manage-

ment for radio transmission and reception. For example,
MANTIS OS copies incoming packets into a fixed system-
maintained buffer (i.e. a packet is always received in the
same place and then can be copied by the application).
OSAL provides a preprocessor macro, which enables direct
access to the system buffers, avoiding costly and unnecessary
memory operations.
MANTIS OS provides relatively inconvenient API for send-

ing and receiving radio packets. A packet should be con-
tained in a fixed-size buffer structure and the size field
should be set directly by the primitive caller. A typical sce-
nario involving sending some fixed-structure packets using
MANTIS API is the following:

struct VerySimpleMessage {

unsigned long OrderNumber;

};

comBuf buf;

buf.size = sizeof(VerySimpleMessage);

((VerySimpleMessage *)buf.data)->OrderNumber = n;

com_send_IFACE_RADIO(&buf);

OSAL provides a more convenient object-oriented API for
sending radio packets, reducing the previous code to the
following:

EnclosingPacket<VerySimpleMessage> buf;

buf->OrderNumber = n;

Radio::SendPacket(buf);

Moreover, OSAL hides all OS-specific low-level details, such
as fixed-size buffers, which enables straight forward porta-
bility among different OS.

3.3 Build system
Developing almost every embedded application starts with

setting up the build environment. One of the goals of the
OSAL is to simplify build system-related tasks as much as
possible.
The steps required to build an application differ on the

two analyzed OS. Under MANTIS OS, the user needs to
create an automake file to generate a Makefile, which must
be re-generated when new sources are added. No built-in de-
bug/release configuration support is provided, despite this
can be done by editing the generated Makefile. Generally,
a typical automake file consists of 3− 4 lines.
FreeRTOS does not provide a build system itself. Hence,
users should manually create Makefile and specify all in-
volved sources and build flags. A typical FreeRTOS-based
application Makefile consists of around 50 lines.
We explored the possibilities of GNU make to provide a sim-

ple building system for OSAL. As a result, we created a num-
ber of scripts which dramatically reduce the build system-
related complexity, as shown in the following makefile ex-
ample to build a simple application:

WOSMAKE_ROOT = ../../../../makesystem

include $(WOSMAKE_ROOT)/Makeapp.lazy

In this case, the binary file name and the source list is au-
tomatically generated based on current directory name and
contents. Alternatively, it is possible to specify this infor-
mation explicitly:

WOSMAKE_ROOT = ../../../../makesystem

wosapp_objects = my_obj1.o my_obj2

wosapp_image = my_binary

Note that the OSAL build system automatically supports
switching between MANTIS and FreeRTOS, as well as be-
tween DEBUG and RELEASE configurations, requiring no make-
file or source file modifications.

4. EVALUATION
The OSAL has been successfully implemented on top of

MANTIS OS and FreeRTOS as part of the EU funded project
WASP [13] with the internal name WASP OS API (WOS).
Complete documentation of the design and implementation
process is publicly available in [14] under the Work Package
3 public deliverables. Documentation regarding the WOS
API is periodically updated in [14].

4.1 Code and memory footprint overhead
We evaluated the overhead on the executable code size

and the memory footprint of initialized and non-initialized
memory. We identify the overhead of each basic primitive
and extrapolate the run-time overhead based on the compo-
sition of these measurements. Our implementation ensures
that no additional run-time overhead exists due to the ab-
straction layer.

We created a number of sample applications to easily iden-
tify when and why overhead was generated comparing four
OS configurations: MANTIS OS, MANTIS OS + OSAL,
FreeRTOS, and FreeRTOS + OSAL.

The following tables show the evaluation of of executable
size, initialized (Mem-I) and non-initialized (Mem-NI) mem-
ory in bytes for each individual functionality.

OS initialization overhead
Table 4 shows the evaluation of the start-up initialization
functions in Table 1. In this example we compare the byte
sizes for the compiled code in RELEASE and TRACE modes. In
the latter, OSAL initializes the tracing framework (mutex
and some buffers), responsible of the additional overhead
compared to the former.

The difference between the two modes is due to the avail-
ability of debug tracing as, e.g. wos_dbg_print("Bug!");.
This allows inserting debugging lines that only produce bi-
nary code in TRACE mode, resulting in no overhead when
compiling in RELEASE mode.

Our evaluation shows a minimal overhead of 22 bytes in
Mantis OS and 40 bytes in FreeRTOS due to the initial-
ization process with much lower overhead on the memory
footprint in RELEASE mode. Note that the impact of the
TRACE configuration is relatively small, enabling the use of
debugging primitives at a reasonable cost.

Starting from the synchronization example, we will use
the OSAL initialization function for both raw RTOS and

Mantis OS

#include <mos.h>

#include <msched.h>

#include <led.h>

#define DEFAULT_STACK_SIZE 128

void thread1(void) {}

extern "C"

void start(void) {

mos_thread_new(thread1, DEFAULT_STACK_SIZE,

PRIORITY_NORMAL);

}

FreeRTOS

#include "FreeRTOS_all.h"

void thread2(void *) {

vTaskDelete(xTaskGetCurrentTaskHandle());

}

void thread1(void *) {

FreeInitialThreadStack();

xTaskCreate(thread2, NULL, 64, NULL, 1, NULL);

vTaskDelete(xTaskGetCurrentTaskHandle());

}

int main() {

FreeRTOS_InitializeForWASP();

xTaskCreate(thread1, NULL, 64, NULL, 1, NULL);

vTaskStartScheduler();

}

OSAL

#include <wos/task.h>

#include <wos/led.h>

void thread1(void) {}

wos_status wos_main(void) {

wos_task_create(thread1, NULL);

return MAKE_STATUS(WOS_SUCCESS);

}

Table 3: Simple application example creating one
empty task

Size Mem-I Mem-NI
MANTIS 9048 20 534
MANTIS+OSAL(R) 9056 (+8) 20 534
MANTIS+OSAL(T) 9070 (+22) 20 544 (+10)
FreeRTOS 4448 46 114
FreeRTOS+OSAL(R) 4474 (+24) 46 114
FreeRTOS+OSAL(T) 4488 (+40) 46 116 (+2)

Table 4: Overhead introduced by OSAL in system
initialization functions (see Table 1) compiled in dif-
ferent modes: TRACE (T) and RELEASE (R).

OSAL-based builds to filter out the constant initialization
overhead and to track only the changes implied by using
OSAL API instead of raw RTOS API.

Size Mem-I Mem-NI
MANTIS 9066 20 534
MANTIS+OSAL 9074 (+8) 20 534
FreeRTOS 4480 46 114
FreeRTOS+OSAL 4510 (+30) 46 114

Table 5: Overhead introduced by OSAL in task cre-
ation functions (see Table 3).

Size Mem-I Mem-NI
MANTIS 9088 20 544
MANTIS+OSAL 9088 20 544
FreeRTOS 4518 46 116
FreeRTOS+OSAL 4526 (+8) 46 116

Table 6: Overhead introduced by OSAL in task cre-
ation functions with original OS primitives (see Ta-
ble 3).

Task handling overhead
To evaluate the overhead added to the task handling primi-
tives we consider the code shown in Table 3. Table 5 shows
that the overhead is mostly the same as for previous sample
which is caused by the initialization functions.

To distinguish between startup-related overhead and other
types of overhead, we change the FreeRTOS and MANTIS
samples to use the OSAL initialization while directly calling
the original OS primitives. The modified code is shown in
Table 10.

Note that when FreeRTOS is used, OSAL wraps all thread
functions in an own function that calls vTaskDelete() after
a thread function has returned. This produces a constant 6
byte overhead plus 2 bytes for each task being created.

Further examples in the rest of this paper, do not in-
clude the initialization overhead in order to provide a better
overview of the the isolated overhead of each evaluated func-
tionality.

Synchronization overhead
We evaluate the overhead of synchronization primitives by
comparing the footprint sizes of a relatively small program
that performs iterative mutex testing, as shown in Table 11.

Table 8 shows that OSAL does not introduce any over-
head for MANTIS OS, and the only overhead for FreeRTOS
are the already mentioned 6 bytes plus 2 additional bytes
for each task created, which are due to the task function
wrapping. Therefore, the synchronization API itself does
not produce any additional overhead, neither in code size
nor memory footprint.

Timers overhead
To evaluate the overhead introduced in software timers, we
compare the footprint sizes for a sample application regis-
tering three timer handlers which increase one of three static
variables. Again, as OSAL functions are simple inline wrap-
pers around the native OS calls, no overhead is produced as
shown in Table 7.

Size Mem-I Mem-NI
MANTIS 10842 20 679
MANTIS+OSAL 10842 20 679
FreeRTOS 6974 46 210
FreeRTOS+OSAL 6974 46 210

Table 7: Overhead introduced by OSAL in a sample
timer application.

Size Mem-I Mem-NI
MANTIS 11324 32 639
MANTIS+OSAL 11324 32 639
FreeRTOS 6974 58 164
FreeRTOS+OSAL 6986 (+12) 58 164

Table 8: Overhead introduced by OSAL in synchro-
nization functions (see Table 11).

Size Mem-I Mem-NI
MANTIS 11498 22 633
MANTIS+OSAL 11498 22 633

Table 9: Overhead introduced by OSAL in a sample
message sending application (see Table 12).

Mantis OS

#include <wos/task.h>

#define DEFAULT_STACK_SIZE 128

void thread1(void) {}

wos_status wos_main(void) {

mos_thread_new(thread1, DEFAULT_STACK_SIZE,

PRIORITY_NORMAL);

return MAKE_STATUS(WOS_SUCCESS);

}

FreeRTOS

#include <wos/task.h>

void thread2(void *) {

vTaskDelete(xTaskGetCurrentTaskHandle());

}

wos_status wos_main(void) {

xTaskCreate(thread2, NULL, 64, NULL, 1, NULL);

}

Table 10: Modified simple application example cre-
ating one empty task with original OS primitives

Radio API overhead
With respect to the radio API, Table 12 shows a simple
application sending a sequence of short messages. Since
FreeRTOS does not directly support radio interfacing, at

#include <wos/task.h>

// ...

static wos_mutex_t s_TestMutex;

static int s_Busy = 0;

static int s_Error = 0;

static int s_Iter = 0;

static int s_Threads = 0;

#define MAX_SLEEP_T 100

void thread_body(void) {

int i;

wos_mutex_lock(&s_TestMutex);

s_Threads++;

wos_mutex_unlock(&s_TestMutex);

for (i = 0;;i++) {

wos_mutex_lock(&s_TestMutex);

if (s_Busy) {

WOS_LED_ON(RED);

wos_dbg_print("Bug!");

s_Error = 1;

}

s_Busy = 1;

wos_sleep(((unsigned)rand()) % MAX_SLEEP_T);

s_Iter++;

s_Busy = 0;

wos_mutex_unlock(&s_TestMutex);

}

}

wos_status wos_main(void) {

wos_mutex_init(&s_TestMutex);

wos_task_create(thread_body, NULL);

wos_task_create(thread_body, NULL);

wos_task_create(thread_body, NULL);

for (;;) {

wos_dbg_printf("Iteration: %5d;

threads: %d; error: %d\n",

s_Iter, s_Threads, s_Error);

}

return MAKE_STATUS(WOS_SUCCESS);

}

Table 11: Sample OSAL application using synchro-
nization primitives.

this time, we only evaluate this feature with MANTIS OS.
Table 9 shows that the usage of OSAL primitives do not
increment the footprint, hence incurring in no additional
overhead due to OSAL.

4.2 Evaluation overview
Table 13 summarizes the additional overhead introduced

by OSAL for each of the analyzed functionalities. Note that
the overhead, measured in bytes, is accounted for each of the
referred functions in isolation (e.g. ignoring the overhead
due to initialization). The total additional overhead of a
complex application depends on the number of tasks and
other resources created, although our analysis shows that it
is negligible with respect to the overall footprint of a real
application.

struct VerySimpleMessage {

unsigned long OrderNumber;

};

using namespace WOS::Radio;

wos_status wos_main(void) {

wos_radio_init();

EnclosingPacket<VerySimpleMessage> buf;

for (unsigned long n = 1;;n++) {

buf->OrderNumber = n;

wos_dbg_printf("Sending... (%ld)", n);

WOS_LED_ON(GREEN);

Radio::SendPacket(buf);

wos_dbg_printf("done\n");

WOS_LED_OFF(GREEN);

wos_sleep(100);

}

return MAKE_STATUS(WOS_SUCCESS);

}

Table 12: Sample OSAL application sending a se-
quence of short messages containing increasing num-
bers.

MANTIS OS FreeRTOS
Function (a) (b) (c) (a) (b) (c)

Initialization +8 0 0 +24 0 0
Tasks 0 0 0 +8 0 0
Mutex 0 0 0 +12 0 0
Timers 0 0 0 0 0 0
Messages 0 0 0 - - -

Table 13: Overview of overhead introduced by
OSAL (in bytes) in (a) code size, (b) initialized
memory, and (c) non initialized memory.

5. CONCLUSIONS
Portability of application-level code is a major concern

in fast and efficient developments for sensor networks. We
presented an Operating System Abstraction Layer (OSAL)
to reduce the portability efforts of software applications be-
tween platforms, independent of the running OS. We claim
that such design reduces dramatically the required efforts
related to portability of application code, and effectively en-
ables the re-utilization of software components in later de-
ployments.
We performed an extensive evaluation on two implemen-

tations on top of MANTIS OS and FreeRTOS, which are
currently being exploited in the development of a full net-
work stack for wireless sensor networks. Our tests show that
the introduced overhead is negligible while the common API
guarantees that binaries can be compiled on both platforms
without introducing any change in the source code. Our ex-
perience show that similar approaches can be followed with
other thread-based operating systems, incurring in little rel-
ative effort compared to a large deployment.
Future and on-going work includes the extension of the

FreeRTOS port to support the radio API as well as further
evaluations on top of additional platforms. Additional work
to extend OSAL to event-driven OS is under consideration.

A complete description of the OSAL API is periodically
updated in [14].

6. ACKNOWLEDGMENT
This work is partially financed by the European Commis-

sion under the Framework 6 IST Project ”Wirelessly Acces-
sible Sensor Populations (WASP)”.

7. REFERENCES
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci, “Wireless sensor networks: A survey,”
Computer Networks, vol. 38, no. 4, pp. 393–422, 2002.

[2] A. Schoofs, M. Aoun, P. van der Stok, J. Catalano,
R. Serna Oliver, and G. Fohler, “On enabling portable
and time-controlled wireless sensor network
applications,” in Proceedings of the 1st International
Conference on Sensor Networks Applications,
Experimentation and Logistics (SENSAPEAL09),
Athens, Greece, September 2009.

[3] “Contiki OS,” 2009. [Online]. Available:
http://www.sics.se/contiki/

[4] “FreeRTOS,” 2009. [Online]. Available:
http://www.freertos.org/

[5] “MantisOS,” 2009. [Online]. Available:
http://mantis.cs.colorado.edu/

[6] “TinyOS,” 2009. [Online]. Available:
http://www.tinyos.net/

[7] M. A. Rivas and M. G. Harbour, “Evaluation of new
posix real-time operating systems services for small
embedded platforms,” in Proceedings of the 15th
Euromicro Conference on Real-Time Systems
(ECRTS), 2003.

[8] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose,
A. Sheth, B. Shucker, C. Gruenwald, A. Torgerson,
and R. Han, “Mantis os: an embedded multithreaded
operating system for wireless micro sensor platforms,”
Mobile Networks and Applications (MONET) Journal,
vol. 10, no. 4, pp. 563–579, 2005.

[9] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a
lightweight and flexible operating system for tiny
networked sensors,” in Proceedings of the 29th Annual
IEEE International Conference on Local Computer
Networks (LCN04). Washington, DC, USA: IEEE
Computer Society, 2004, pp. 455–462.

[10] C. Duffy, U. Roedig, J. Herbert, and C. J. Sreenan,
“An experimental comparison of event driven and
multi-threaded sensor node operating systems,” in
Third IEEE International Workshop on Sensor
Networks and Systems for Pervasive Computing
(PERSENS2007), I. C. S. Press, Ed., White Plains,
USA, March 2007.

[11] P.Levis and D.Culler, “Maté: A tiny virtual machine
for sensor systems,” SIGOPS Oper.Syst.Rev., vol. 36,
2002.

[12] “Sentilla.” [Online]. Available:
http://www.sentilla.com

[13] “EU Framework 6 IST Project ”Wirelessly Accessible
Sensor Populations” (WASP),” 2006-2010. [Online].
Available: http://www.wasp-project.org/

[14] “The WASP OS API.” [Online]. Available:
http://rts-wiki.eit.uni-kl.de/WASP/index.html

