
Presented at the 24th International Conference on Real-Time Networks and Systems (RTNS), ACM, 2016.

Scheduling Real-Time Communication in IEEE 802.1Qbv
Time Sensitive Networks∗

Silviu S. Craciunas Ramon Serna Oliver Martin Chmelík Wilfried Steiner
TTTech Computertechnik AG

Schönbrunner Straße 7
1040 Vienna, Austria

{scr, rse, mcm, wst}@tttech.com

ABSTRACT
The enhancements being developed by the Time-Sensitive
Networking Task Group as part of IEEE 802.1 emerge as
the future of real-time communication over Ethernet net-
works for automotive and industrial application domains.
In particular IEEE 802.1Qbv is key to enabling timeliness
guarantees via so-called time-aware shapers. In this paper,
we address the computation of fully deterministic schedules
for 802.1Qbv-compliant multi-hop switched networks. We
identify and analyze key functional parameters affecting the
deterministic behaviour of real-time communication under
802.1Qbv and, based on a generalized configuration of these
parameters, derive the required constraints for computing
offline schedules guaranteeing low and bounded jitter and
deterministic end-to-end latency for critical communication
flows. Furthermore, we discuss several optimization direc-
tions and concrete configurations exposing trade-offs against
the required computation time. We also show the perfor-
mance of our approach via synthetic network workloads on
top of different network configurations.

1. INTRODUCTION
Ethernet has evolved to be the standard open communi-

cation mechanism for a wide range of application domains
originally not bound to strict timing requirements. Typical
design and performance criteria for standard Ethernet de-
ployments are related to best-effort communication, in which
maximizing throughput and minimizing average delays are
primary objectives. In the real-time domain, safety-critical
timing aspects have been introduced by means of technolo-
gies like TTEthernet (SAE AS6802 [21, 34]), PROFINET,
and EtherCAT [27] among others. Recently, the conver-
gent needs of the industrial automation and automotive do-
mains are pushing for the standardization of solutions en-

∗This project has received funding from the European
Union’s Horizon 2020 research and innovation programme
under grant agreement No 700665 (CITADEL).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

RTNS ’16, October 19-21, 2016, Brest, France
c© 2016 ACM. ISBN 978-1-4503-4787-7/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2997465.2997470

abling mixed-criticality communication allowing real-time
and best-effort traffic to coexist simultaneously within IEEE
802 networks. Quality of service, as introduced in the IEEE
802.1BA Audio/Video Bridging (AVB) standard, has raised
significant interest within the industrial and automotive do-
mains, but falls short of the industry expectations for hard
real-time applications demanding reliable and fully deter-
ministic communication [2, 25, 32]. Enhancing the features
of AVB with fault-tolerant mechanism allowing strict timing
guarantees with low latency and jitter is desirable to support
real-time applications over Ethernet.

The IEEE 802.1 Time Sensitive Networking (TSN) task
group [20] is in the process of standardizing time-sensitive
capabilities over IEEE 802 networks by defining a whole
range of 802.1 sub-standards, covering aspects that range
from clock synchronization and frame preemption to re-
dundancy management and scheduled traffic enhancements.
Key enablers of real-time communication in TSN networks
are a network-wide clock reference with bounded precision,
known and bounded network latencies (e.g. switch for-
warding times, link delays), as well as isolation of critical
and non-critical traffic classes through a global communica-
tion schedule. IEEE 802.1ASrev [20] defines the basis for
a network-wide time-synchronization protocol, achieving a
global network clock and basic fault-tolerance by means of a
re-election mechanism of the clock master (also called grand-
master) in case of failures. Time sensitive communication
takes place via so-called time-sensitive streams (or flows),
where a stream is defined by a sender (or talker) and one or
multiple receivers (or listeners). Individual messages belong-
ing to a flow are defined using the VLAN identifier (VID)
of VLAN-tagged frames. Streams can have different priori-
ties defining their traffic class, given by the 3 priority bits of
the priority code point (PCP) of the IEEE 802.1Q header.
IEEE 802.1Qbv [19] defines a time-based shaper functional-
ity enabling time-triggered communication [22] at the egress
ports. A time-aware shaper is essentially a gate enabling or
disabling the transmission of frames for a queue following
the specification of a periodic schedule.

Traditionally, worst-case end-to-end communication la-
tencies in non-scheduled networks (i.e., using priority
queues) have been analyzed through methods like network
calculus [12, 14] or the trajectory approach [4]. In such ap-
proaches, the end-to-end latency of flows is computed based
on traffic priorities and arrival patterns making composi-
tional system design and isolation of time behaviour very
difficult. With the introduction of 802.1Qbv, the comple-

http://dx.doi.org/10.1145/2997465.2997470

Port A
(ingress)

Port C
(egress)

Priority
filter

Queue 3

Queue 2

Queue 1

Queue n

SW
Engine

Port B
(ingress)

Figure 1: Simplified view of a 802.1Qbv-capable switch.

mentary approach, which we present in this paper, is now
also supported, where correct schedules with respect to in-
dividual flow requirements are created offline. The major
benefit of the 802.1Qbv extension is that it allows temporal
isolation and compositional system design when flows are
scheduled end-to-end.

In our previous work [7, 8, 33], we have addressed sev-
eral scheduling problems in TTEthernet networks. However,
the particularities of TSN demand different solutions than
those employed in the past. In this paper, we address the
scheduling problem arising from the IEEE 802.1Qbv exten-
sion on multi-hop fully switched TSN networks, presenting a
method for computing static schedules for 802.1Qbv-capable
network devices using Satisfiability Modulo Theories (SMT)
and, alternatively, Optimization Modulo Theories (OMT)
solvers. We first identify key functional parameters affect-
ing the behaviour of TSN networks and extract a general-
ized configuration of these parameters for hard real-time net-
works (Section 2). In Section 3 we describe the formalization
of the network model used throughout the paper. Based on
the formalization and the generic configuration, we adapt a
subset of constraints general to deterministic Ethernet from
previous work and, additionally, construct TSN-specific con-
straints that correctly formulate the real-time behaviour of
TSN streams (Section 4). In Sections 5 and 6 we discuss
the implication of different configurations on the scheduling
problem and present implementation details of our method
using SMT and OMT solvers together with a discussion on
optimization objectives. After the experimental evaluation
in Section 7, we survey related work in Section 8 and con-
clude the paper in Section 9.

2. 802.1Qbv FUNCTIONAL PARAMETERS
Figure 1 depicts a logical representation of a simplified

802.1Qbv-capable switch with three ports. The figure de-
picts a scenario in which network traffic traverses the switch
from an ingress port to an egress port. Internally, the ports
are connected to a filter distributing incoming frames to the
associated queue of the egress port based on classification
criteria like e.g. the priority code point (PCP) of the IEEE
802.1Q header. On regular switches with multiple ports, in-
coming traffic will be directed to the corresponding egress
port by the switching engine. Every port will have a similar
logical composition on egress as the one depicted, including
a series of logical queues buffering the respective frames un-
til their transmission. In the most generic representation,
each 802.1Qbv queue has a timed gate associated to it en-
abling or disabling the transmission of frames according to
a predefined static schedule. Hence, scheduled events deter-

mine at which time instants a queue is opened and traffic
is forwarded to the egress port and at which time instants
the queue is closed such that any pending traffic remains
buffered. If multiple queues are opened at the same time,
the queue priority determines which of the queues is allowed
to forward frames.

We identify two key parameters that affect the timing
properties of network flows in 802.1Qbv-capable networks,
namely Device capabilities and Queue configuration.

One important characteristic is the capability of devices,
namely, if they are scheduled or not. If the end-systems are
not scheduled but switches are, frames from the end-nodes
may arrive in any order to the switches. Therefore, the first
switch on the route has to act as a synchronization gate.
This synchronization is possible if there are enough queues
to isolate flows arriving simultaneously, allowing thus each
of them to be scheduled deterministically. Complementary,
end-systems may be scheduled but switches are not. In such
a case, switches act as delay elements but cannot control
the time of forwarding frames. If end-systems and switches
are scheduled, the scheduler can plan when to send indi-
vidual frames of flows such that they arrive with a known
order at the first switch and switches can control forward-
ing times. We denote a network configuration (G(E)) where
only end-system are scheduled with Ve and one where only
switches are scheduled with Vs. We denote fully scheduled
networks, i.e., all devices are scheduled, with configuration
Ve+s. Here we focus on deterministic networks with sched-
uled end-systems and switches and leave the other corner-
cases for a more in-depth analysis in future work.

The number of queues per egress port, which translates
to the number of different priorities that can be handled,
affects the amount of traffic and the real-time properties to
be guaranteed. Another important aspect is how the queues
operate. Queues may follow a strict priority policy, meaning
that the gate is always opened and the arbitration is purely
based on their assigned priority. Using the time-gates, how-
ever, queues can be scheduled following a time-triggered
(TT) paradigm, where the priority is overruled by the sched-
ule, i.e., the schedule of the timed-gate defines the servicing
order, not the priority. If queues are scheduled following
a mutually exclusive pattern, i.e., no two queue gates are
opened at the same time, the result is a fully deterministic
forwarding policy. In this paper we focus on creating sched-
ules for the timed-gates of scheduled queues. We denote
the queue configuration by the tuple G(Q) = 〈ℵ,ℵtt,ℵprio〉,
where ℵ is the total number of queues per port, ℵtt is the
number of queues operating as scheduled (TT) queues, and
ℵprio is the remaining number of priority queues. Without
loss of generality we assume that in the system configura-
tion, the scheduled queues always have the highest priorities
of all queues, including the remaining priority queues.

Having different queue types opens up the possibility to
have two different types of traffic, namely scheduled and
non-scheduled traffic. Scheduled traffic is assigned to the
scheduled queues in order to guarantee latency and jitter
requirements. Non-scheduled traffic is isolated from sched-
uled traffic within the priority queues of a device. Within
the priority queues, non-scheduled flows may interfere with
each other, but not with scheduled flows (since the associ-
ated scheduled queues always have higher priority). For the
non-scheduled traffic, worst-case end-to-end latencies in the
presence of interference have been analyzed through meth-

ods like network calculus [14] or the trajectory approach [4]
for AFDX networks while recently, similar analysis methods
have been employed for AVB networks [12].

Scheduled traffic is defined as having requirements on the
maximum end-to-end latency as well as minimal jitter con-
straints, i.e., each periodic instance of the communication
flow has to arrive at the same instant in time. In real-time
systems, this traffic is said to have high criticality. Non-
scheduled traffic cannot be guaranteed with minimal jitter
and may or may not have requirements on the end-to-end
latency. In this paper we address the scheduling of high-
criticality traffic for fully-scheduled networks consisting of
802.1Qbv devices with ℵtt ≥ 1.

A system configuration, composed of the 2 parameters
presented above, is defined by the tuple 〈G(E), G(Q)〉. In
Sections 3 and 4 we introduce the 802.1Qbv-specific net-
work and traffic model and define scheduling constraints
for high-criticality traffic, respectively, assuming generic pa-
rameter configurations for critical communication, namely
{Ve+s, 〈n,m, n−m〉}. Our constraints generate schedules for
the m queues while ensuring that critical flows meet their
latency and jitter requirements. Later, in Section 6, we dis-
cuss several scenarios also including priority queues and the
resulting trade-offs based on specific system configurations.

3. NETWORK AND TRAFFIC MODEL
Our work targets multi-hop layer 2 switched Ethernet net-

works over full-duplex multi-speed physical links. We model
the network, similar to [8] and [33], as a directed graph
G(V,L), where the nodes (switches and end-systems) are the
set of graph vertices (V) and the links between nodes are rep-
resented through the graph edges (L ⊆ V×V). A full-duplex
physical link between nodes va ∈ V and vb ∈ V results in two
directional logical links, each denoted by an ordered tuple,
namely [va, vb] ∈ L and [vb, va] ∈ L, respectively. Maintain-
ing the notation from [8], a physical link [va, vb] is character-
ized by the tuple 〈[va, vb].s, [va, vb].d, [va, vb].mt, [va, vb].c〉,
where [va, vb].s is the speed of the link, [va, vb].d is the propa-
gation delay on the medium, and [va, vb].mt is the macrotick
of the link. We extend the definition with a new parameter,
[va, vb].c, which represents the number of available queues
in the device. Since any given egress port is connected to at
most one link, we establish an equivalence between the port
and its associated link. Therefore, we refer to [va, vb].c as
the number of egress queues1 present in the respective port
as a property of the link. We derive the transmission time
of a frame between two nodes through the link speed (or
bit rate) which represents the transfer rate over the physical
network cable. For e.g. on a 1Gbit/sec link an MTU-sized
IEEE 802.1Q Ethernet frame of 1542 bytes would have a
transmission time of 12.336µsec. The propagation delay is
additional delay on frame arrival resulting from the delay
on the physical medium and the link length. The macrotick
is a design property either given by device constraints or
system-level design specifications. It specifies the length of
a discrete time unit defining the granularity of time events
for the given link.

A stream, or flow, is a periodic multicast data transmis-
sion from one sender (talker) to one or multiple receivers

1The proposed value for this parameter is 8 according to
802.1Qbv [19], however, we do not put any limitation on
this number for the scheduling algorithm.

(listeners). Without loss of generality, we choose to sim-
plify the notation by restricting the number of receivers
to one. Enhancing the model to include multicast flows
is a trivial extension without implications on the valid-
ity of the presented method. We denote the input set of
flows by S. Similar to [33], a flow si ∈ S from sender
node va to receiver node vb, routed through the intermedi-
ary nodes (i.e. switches) v1, v2, . . . , vn−1, vn is expressed as
si = [[va, v1], [v1, v2], . . . , [vn−1, vn], [vn, vb]]. A flow is char-
acterized by the tuple 〈si.e2e, si.L, si.T 〉, denoting the max-
imum allowed end-to-end latency, the data size in bytes, and
the period of the flow, respectively.

In the model differentiate between a flow and the instance
of a flow on a link. An instance of a flow si ∈ S routed
through link [va, vb] ∈ L is denoted by s

[va,vb]
i . We denote

the queue for the given flow instance in the egress port as a

variable s
[va,vb]
i .p. Note that the queue variable is synony-

mous to the priority of the flow within the egress port of
the respective device. Additionally, we draw an equivalence
between the egress port and its respective transmission link.
It is important to note that the queue assigned to flow in-
stances of the same flow may or may not change along the
subsequent egress ports2.

Since the data size of a flow is allowed to exceed the Eth-
ernet MTU size in TSN, each flow instance is associated
with a set of frames, each with size less than or equal to
the MTU size. Maintaining our notation from [8], we de-

note the set of frames f
[va,vb]
i,j of a flow instance s

[va,vb]
i by

F [va,vb]
i . Additionally, the first and last frame of the set,

ordered by the schedule offset on the link, are expressed

as F [va,vb]
i with f

[va,vb]
i,1 and last(F [va,vb]

i), respectively. A

frame f
[va,vb]
i,j ∈ F [va,vb]

i is defined by the tuple

〈f [va,vb]
i,j .φ, f

[va,vb]
i,j .T, f

[va,vb]
i,j .L〉,

where f
[va,vb]
i,j .φ ∈ [0, f

[va,vb]
i,j .T] is the offset in macroticks

of the frame on link [va, vb], f
[va,vb]
i,j .T = d si.T

[va,vb].mt
e is

the period of the flow scaled to the link macrotick, and

f
[va,vb]
i,j .L = dLi×[va,vb].s

[va,vb].mt
e is the transmission duration of

the frame also scaled to the link macrotick [8].

4. SCHEDULING CONSTRAINTS
In order compute a schedule for the timed gates of the

scheduled queues we define scheduling constraints for the
frame offset variables (φ) and the flow instance queue vari-
ables (p), such that the correct temporal behaviour on the
scheduled communication is guaranteed. We differentiate
between basic constraints for deterministic Ethernet (Sec-
tion 4.1) and 802.1Qbv specific constraints (Section 4.2) for-
malising the specific behaviour of time sensitive flows.

4.1 Basic Deterministic Ethernet Constraints
In [33], a standard TTEthernet model is used where peri-

odic flows are limited to one single frame. In [8], the model is
enhanced allowing combined scheduling of preemptive tasks
and network flows in a TTEthernet network. The frame
description and model from [8], where tasks are modelled
as sets of frames, fits well into the multi-frame flow model

2Different queue assignment along multi-hop routes can oc-
cur by means of e.g. VLAN re-tagging.

[vx,va]

[vy,va
] [va,vb]

va

(a) Interleaving flows in egress queue.

[vx,va]

[vy,va
] [va,vb]

va

(b) Isolation of flows in different queues.

[vx,va]

[vy,va
] [va,vb]

va

(c) Isolation of flow arrival.

Figure 2: Flow interleaving and isolation within an egress port of a 802.1Qbv switch.

that we discuss here. Hence, in this section we briefly reit-
erate the most important constraints from [8], adapted and
changed to fit our model, and refer the reader to [8, 33] for
a more complete and detailed list of scheduling constraints
for deterministic Ethernet.

Frame Constraint. The frame offset of any frame sched-
uled in the network has to be greater than or equal to 0. Ad-
ditionally, the entire transmission window (offset plus frame
duration) has to fit within the frame period. Hence, we have
the condition adapted from [8]

∀si ∈ S,∀[va, vb] ∈ si, ∀f [va,vb]
i,j ∈ F [va,vb]

i :(
f
[va,vb]
i,j .φ ≥ 0

)
∧
(
f
[va,vb]
i,j .φ ≤ f [va,vb]

i,j .T − f [va,vb]
i,j .L

)
.

Link Constraint. No two frames that are routed
through the same physical link in the network can overlap
in the time domain. The constraint adapted from [8] is as
follows

∀[va, vb] ∈ L,∀F [va,vb]
i ,F [va,vb]

j , i 6= j

∀f [va,vb]
i,k ∈ F [va,vb]

i , ∀f [va,vb]
j,l ∈ F [va,vb]

j ,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
f
[va,vb]
i,k .φ+ α× f [va,vb]

i,k .T ≥

f
[va,vb]
j,l .φ+ β × f [va,vb]

j,l .T + f
[va,vb]
j,l .L

)
∨ (1)(

f
[va,vb]
j,l .φ+ β × f [va,vb]

j,l .T ≥

f
[va,vb]
i,k .φ+ α× f [va,vb]

i,k .T + f
[va,vb]
i,k .L

)
,

where hpji = lcm(si.T, sj .T) is the hyperperiod of si and sj .
Flow Transmission Constraint. The propagation of

frames of a flow must follow the sequential order along
the routed path of the flow. The network precision, de-
noted with δ, represents the worst-case difference between
the local clocks of any two synchronized (e.g. via the IEEE
802.1AS [20] time-synchronization protocol) devices. Please
note that in the TTEthernet synchronization protocol [35]
the synchronization frames typically have the highest pri-
ority and introduce a shuffling delay to the critical frames.
The IEEE 802.1AS protocol also requires synchronization
frames that travel on the same physical links as the critical
frames but they can have a lower priority than the critical
traffic and hence do not introduce a shuffling delay.

∀si ∈ S,∀[va, vx], [vx, vb] ∈ si,

∀f [va,vx]
i,j ∈ F [va,vx]

i , ∀f [vx,vb]
i,j ∈ F [vx,vb]

i :

f
[vx,vb]
i,j .φ× [vx, vb].mt− [va, vx].d− δ ≥ (2)

(f
[va,vx]
i,j .φ+ f

[va,vx]
i,j .L)× [va, vx].mt.

The constraint imposes that a frame can only be scheduled
on a subsequent link [vx, vb] after the complete reception on
the previous link [va, vx], including the propagation delay
of the respective link ([va, vx].d). Note that, as opposed
to [8], the constraint is set to individual frames rather than
the complete flow instance, to allow initiating forwarding as
soon as the first frame is fully received without requiring to
buffer the entire flow.

End-to-End Constraint. The maximum end-to-end la-
tency constraint specifies that the difference between the ar-
rival and sending time of a flow has to be less than or equal
to the specified maximum. We denote the sending link of
flow si with src(si) and the last link before the receiving
node with dest(si).

∀si ∈ S : src(si).mt× fsrc(si)
i,1 .φ+ si.e2e ≥ (3)

dest(si).mt× (last(Fdest(si)
i).φ+ last(Fdest(si)

i).L).

4.2 802.1Qbv Constraints
In TTEthernet a static schedule is provided per device

port and defines the temporal behaviour of all frames of the
scheduled flows whereas in 802.1Qbv the schedule is spec-
ified for an egress queue, affecting multiple flows with the
same traffic class (priority). Moreover, a TTEthernet stream
is defined as one frame of at most MTU size whereas flow
in 802.1Qbv can be composed of multiple frames. Hence,
802.1Qbv-specific constraints need to be specified. We elab-
orate on these constraints using a simplified example, de-
picted in Figure 2, where two flows arriving at a switch from
different sources are forwarded via the same egress port, dis-
cussing both the case when they are queued in the same
scheduled queue and the case when they use different sched-
uled queues.

Egress Interleaving. In the first scenario, depicted in
Figure 2(a), the two flows arrive from different links at
roughly the same time. Regardless of the synchronization
protocol used, there will always be an amount of synchro-
nization error between individual devices that may lead to
alternating arrival order of frames during runtime. There-
fore, the order in which the individual frames are placed in
the scheduled queue at runtime is non-deterministic. It is
important to note that the schedule controls the timing of
the events on the egress port, not the order of frames in the
queue. If the timed gate of the respective queue is opened
first for the time interval needed to transmit 2 frames and
some time later for 3 frames, as depicted in the example,
any combination of the respective frames of both flows may
occur on the egress port. Hence, the timely behaviour of the
two flows may oscillate each periodic instance accumulating
jitter for the overall end-to-end transmission. In order to
guarantee that the given end-to-end latency is always ful-
filled, the worst-case delay introduced on each egress port

along the flow path must be considered in the end-to-end
latency constraint for the flow. However, the worst-case jit-
ter that accumulates with each hop along the route of the
flow is not desirable in hard real-time systems. Addition-
ally, the non-determinism introduced by the interleaving of
individual frames weakens the temporal isolation of flows
since a change in one flow may affect other flows by adding
interference delay and jitter.

One solution to avoid this delay and jitter is hence to
introduce conditions on the computed schedule preventing
flows from interleaving, thus guaranteeing the isolation of
flows (or frames) in the transmitting queues. In other words,
the constraints must either enforce a deterministic order of
the flows in queues or place flows in different queues such
that each frame is dispatched deterministically according to
the schedule of the associated timed gate. In this case, the
scheduler either enforces two flows arriving during interfer-
ing intervals to be placed in different queues (Figure 2(b)),
or else allow them to be placed in the same queue but ensure
that the intended order and transmission time for all frames
of the flows are preserved (Figure 2(c)).

We first assume that the two considered flows arriving at
the same device will be queued in the same egress queue
and later relax this assumption and formulate the complete
802.1Qbv isolation constraint for high-criticality flows en-
abling deterministic behaviour in the time domain.

Let s
[va,vb]
i and s

[va,vb]
j be, respectively, the flow instances

of si ∈ S and sj ∈ S scheduled on the outgoing link (and
hence egress port) [va, vb] of device va. We remind the
reader the equivalence between link [va, vb] and the respec-
tive egress port and its associated output queues. Flow si
arrives at the device va from some device vx on link [vx, va].
Similarly, flow sj arrives from another device vy on incoming
link [vy, va]. If si and sj would arrive from the same device,
constraint (1) would ensure that the frames of the flows will
not overlap in the time domain.

Ideal scenario. Let’s assume a perfect network where no
frame is lost or discarded and all flows are sent constantly
in full size by their sending nodes (i.e. constant payload
size). In order to guarantee the desired output schedule, it
would suffice to ensure that any two individual frames of
different flows are not scheduled to arrive at the same time,
hence having a deterministic queuing order. The isolation
condition in an ideal network is

∀[va, vb] ∈ L, ∀s[va,vb]i , s
[va,vb]
j ∈ S, i 6= j,

∀f [va,vb]
i,k ∈ F [va,vb]

i , ∀f [va,vb]
j,l ∈ F [va,vb]

j ,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
f
[vx,va]
i,k .φ× [vx, va].mt+ α× si.T + [vx, va].d+ δ ≤

f
[vy,va]

j,l .φ× [vy, va].mt+ β × sj .T + [vy, va].d
)
∨(

f
[vy,va]

j,l .φ× [vy, va].mt+ β × sj .T + [vy, va].d+ δ ≤

f
[vx,va]
i,k .φ× [vx, va].mt+ α× si.T + [vx, va].d

)
,

where hpji
def
= lcm(si.T, sj .T) is, as before, the hyperperiod

of flows si and sj . The condition imposes that individual
frames of any two flows sharing a queue on device [va, vb]
are sent from their sending devices ([vx, va] and [vy, va]) in
such a way that they would arrive at the respective ports of
the receiving device [va, vb] in a deterministic order.

Flow Isolation Constraint. In reality, frame loss can
occur, periodic payload size may vary over time, or frames
might be dropped due to e.g. time-based ingress policing
(e.g. IEEE 802.1Qci). In these cases there may be instances
where a deterministic behaviour on the egress port cannot be
guaranteed. Consider the case where two frames from two
different flows are scheduled to arrive one after the other
at the switch. Both are placed in the desired order in the
same queue. At a later point in time, after both have been
placed in the queue, the timed gate of the queue is opened
for the first frame (belonging to the first flow) and only at a
later point in time for the second frame. If the first frame is
lost, the frame from the second flow will take its place in the
queue and be transmitted in the time slot originally reserved
for the first flow leading to non-determinism and jitter. To
guarantee isolation in a real network, we first consider iso-
lating flows in the time domain assuming that they share
the same egress queue. Hence, we formulate constraint (4)
to enforce a correct ordering of flows, i.e., if a frame of a
given flow has entered a queue, no frame of another flow
may arrive at the queue until all frames of the previous flow
have been fully dispatched. We remind the reader that the
first and last frame of a flow, already ordered by their trans-

mission time (i.e. scheduled offset), are defined by f
[va,vb]
i,1

and last(F [va,vb]
i), respectively. Hence, we have

∀[va, vb] ∈ L, ∀s[va,vb]i , s
[va,vb]
j ∈ S, i 6= j,

∀α ∈ [0, hpji/si.T − 1], ∀β ∈ [0, hpji/sj .T − 1] :(
last(F [va,vb]

i).φ× [va, vb].mt+ α× si.T + δ ≤

f
[vy,va]
j,1 .φ× [vy, va].mt+ β × sj .T + [vy, va].d

)
∨ (4)(

last(F [va,vb]
j).φ× [va, vb].mt+ β × sj .T + δ ≤

f
[vx,va]
i,1 .φ× [vx, va].mt+ α× si.T + [vx, va].d

)
.

The constraint ensures that once a flow has arrived at the
receiving device [va, vb], no other flow can arrive at the same
egress port until the first flow has been completely sent on
the output port. Hence, individual frames of the first arriv-
ing flow will not be interleaved with any frames of another
flow until the queue has been completely emptied.

Frame Isolation Constraint. Despite being generally
faster to solve since not all interleavings of individual frames
have to be considered, the flow isolation constraint is restric-
tive and may decrease the search space for valid schedules.
This can be easily proven by considering an input where a
high-rate flow has a period which is equal to or less than
the combined transmission duration of all frames of a low-
rate flow. In this case, there is at least one period instance
of the high rate flow in which its frames have to interleave
with the frames of the low-rate flow. Given the previous
isolation constraint, this would not be schedulable if there
is only one queue per port, i.e., the flows must be placed in
different queues. The counterexample can be generalized for
an arbitrary number of queues.

In order to avoid this, we relax the previous constraint to
allow frames interleaving between flows in a queue while in
the same time guaranteeing that the order on the output
port is deterministic. We do this by ensuring that there are
only frames of one flow in the queue at a time, i.e., frames
from another flow may only enter the queue if the already

queued frames of the initial flow have been serviced. We
enforce that, if two frames are from different flows, one can
only be scheduled to arrive at the shared queue if the other
has already been dispatched from that queue. The frame
isolation condition for schedulability is then

∀[va, vb] ∈ L,∀s[va,vb]i , s
[va,vb]
j ∈ S, i 6= j,

∀f [va,vb]
i,k ∈ F [va,vb]

i , ∀f [va,vb]
j,l ∈ F [va,vb]

j ,

∀α ∈ [0, hpji/si.T − 1],∀β ∈ [0, hpji/sj .T − 1] :(
f
[va,vb]
j,l .φ× [va, vb].mt+ β × sj .T + δ ≤

f
[vx,va]
i,k .φ× [vx, va].mt+ α× si.T + [vx, va].d

)
∨ (5)(

f
[va,vb]
i,k .φ× [va, vb].mt+ α× si.T + δ ≤

f
[vy,va]

j,l .φ× [vy, va].mt+ β × sj .T + [vy, va].d
)
,

For further use, we denote constraint (5) (or, if the flow
isolation method is used, constraint (4)) between two flows

as Φ(s
[va,vb]
i , s

[va,vb]
j).

The above constraints ((4) and (5)) apply to frames in the
same queue. However, as mentioned before, the scheduler
may choose to place flows in different queues. Hence, the
complete constraint for minimum jitter scheduling of high-
criticality flows is

∀[va, vb] ∈ L, ∀s[va,vb]i , s
[va,vb]
j ∈ S,(

Φ(s
[va,vb]
i , s

[va,vb]
j)

)
∨
(
s
[va,vb]
i .p 6= s

[va,vb]
j .p

)
, (6)

with s
[va,vb]
i .p ≤ [va, vb].c and s

[va,vb]
j .p ≤ [va, vb].c.

5. 802.1QBV CONFIGURATIONS
The constraints presented above apply to the m scheduled

queues of a generic configuration for critical traffic in fully
scheduled 802.1Qbv networks, namely {Ve+s, 〈n,m, n−m〉}.
We now briefly discuss the implications of a number of spe-
cial configurations which include non-scheduled traffic and
different configurations of the scheduled and priority queues.
Configuration 1: {Ve+s, 〈1, 1, 0〉} This case corresponds
to devices in a network having one single queue per egress
port operated as a scheduled queue. Therefore, condi-

tion s
[va,vb]
i .p 6= s

[va,vb]
j .p is always false and, hence, high-

criticality flows are scheduled to be completely sequential in
the time domain. This case amounts to serializing incoming
traffic that converges on the same egress port reproducing a
similar behaviour to bus systems like, e.g. TTP [23].
Configuration 2: {Ve+s, 〈n, 1, n − 1〉} This is a general-
ization of case 1, in which high-criticality flows are assigned
to the scheduled queue while non-scheduled flows use one of
the n − 1 available priority queues. The timely behaviour
of non-scheduled flows depends on queue priorities and ar-
rival patterns [12, 14]. This configuration corresponds to the
special case presented in [31] compatible with the urgency-
based scheduler approach proposed by the authors. This
configuration is suitable for legacy AVB systems that need
to be augmented with a few additional high-criticality flows
requiring tighter temporal bounds.
Configuration 3: {Ve+s, 〈n, n, 0〉} Contrary to case 2, all
of the queues are designated as scheduled queues but we
assign n − 1 queues for scheduled traffic, increasing the so-
lution space for critical traffic. The remaining scheduled

Priority 1

Priority 2

Priority 3

BE-queue

Combined

ρ ρ

Figure 3: Example of generating BE-queue schedules.

queue (BE-queue) is reserved for non-scheduled flows, al-
lowing two alternative approaches. On one hand, leaving
its timed gate permanently open may result in interference
to scheduled traffic due to occasional shuffling caused by
ongoing transmissions originated just before the opening of
scheduled queues. This can be included in the schedulability
conditions by extending the duration of individual scheduled
frames assuming that, in the worst case, one non-scheduled
frame of MTU size can shuffle each critical frame. On the
other hand, we propose to generate a schedule for the timed
gate of the BE-queue by negating the combined schedule of
all scheduled queues, i.e., for each gate open event of any
other queue of the port, we create a gate close event for
the BE-queue, and vice-versa. If need be, depending of de-
vice implementation, gate closing events for the BE-queues
may be decreased by the duration of MTU-sized frame in
order to guarantee that no unscheduled frame may interfere
scheduled frames. In Figure 3 we depict a simple example
where the BE-queue schedule is generated from the com-
bined schedules of all other queues but with the duration of
an MTU BE frame (denoted by ρ in the figure) subtracted
from the gate open events of the combined schedule.

Note that, if all egress ports would have as many queues as
there are incoming scheduled flows, each could be assigned
to its own dedicated queue. Hence, the problem is similar to

scheduling TTEthernet, since s
[va,vb]
i .p 6= s

[va,vb]
j .p is always

true. In this case, each queue will behave as a “large” buffer,
sufficient to accommodate all frames of each flow instance,
guaranteeing isolation between flows through the schedule.
Configuration 4: {Ve+s, 〈n,m, n − m〉} This scenario is
suitable for high-criticality applications that feature both
scheduled and non-scheduled traffic. The separation in
scheduled and non-scheduled queues influences both the so-
lution space for high-criticality flows and worst-case latency
of non-scheduled flows for analysis methods like network cal-
culus [12, 14] or the trajectory approach [4]. If m = 1, we
have configuration 2 in which non-scheduled traffic can be
optimized at the expense of solution space for high-criticality
traffic. On the other hand, if m = n− 1, the solution space
for high-criticality traffic is maximized but the pessimism of
the latency bounds of non-scheduled flows may be higher. In
Section 6.1 we discuss optimization criteria for the general
case of this configuration.
Configuration 5: {Ve+s, 〈n, 0, n〉} This case mimics the
behaviour of a standard AVB (IEEE 802.1BA) network in
which flows are serviced according to the priority assigned to
their traffic class, which is equivalent to setting the timed-
gates to be permanently opened. End-to-end properties of
the non-scheduled flows are subject to complementary anal-
ysis methods like e.g. [6, 9, 12].

6. 802.1QBV SCHEDULER
Satisfiability Modulo Theories (SMT) are designed to

determine the satisfiability of first-order logical formulas
against certain background theories like linear integer arith-
metic (LA(Z)) or bit-vectors (BV) [3, 29]. On top of check-
ing satisfiability, SMT solvers also provide a model for the
given satisfiable context which represents one solution (out
of a set of potentially multiple feasible solutions) for the
given variables and constraints. NP-complete scheduling
problems that exhibit combinatorial characteristic and have
arithmetic constraints, like the one addressed in this pa-
per, present a suitable use-case for constraint-satisfaction
SMT solving in linear arithmetic [1, 11]. Using SMT for
solving deterministic network scheduling problems was first
proposed by Steiner in [33].

The aim of our scheduling algorithm for 802.1Qbv is to
find values for all individual frame offsets and queue assign-
ments in each respective egress port of flows routed along
the network such that the set of constraints are met. We
define both frame offsets and queue assignment indexes as
integer variables to the SMT context and generate assertions
(in linear arithmetic) that correspond to the constraints de-
fined in the previous sections. These frame offsets represent
the open (and close events) for the timed-gate of the re-
spective queue assignment. The transformation from frame
offset and queue index into gate open close events is straight-
forward, i.e., the offset represents the gate open event for the
given queue index and the gate close event is marked by the
duration of the respective frame.

When it comes to scheduling problems, the scalability
of the SMT approach depends on several key factors, ana-
lyzed in detail in [8]. However, an additional consideration,
specific to 802.1Qbv, is the interleaving of different flows
in a given queue. To improve scalability, especially when
scheduling large networks, Steiner introduced an incremen-
tal backtracking algorithm in [33] which we also use here in
a modified form. Our approach attempts to schedule one
flow at a time by adding the flow variables and constraints
to the SMT context and trying to solve the problem with
the added constraints. If a solution is found, the schedule for
the flow is fixed by asserting the constant value provided by
the SMT model into the context. This repeats until either
the complete schedule is found (i.e. all flows are scheduled)
or an incremental step is deemed unfeasible by the solver. In
the latter case, the constraints of the current flow could not
be satisfied with the previous context, so the SMT context
is backtracked by removing the last scheduled flow and rein-
troducing it together with the unfeasible step in question.
Backtracking repeats as long as the merged step results in an
unfeasible problem. In the worst case, the algorithm sched-
ules all flows in one single step. However, in the average case,
there is a significant performance improvement that can be
substantial especially when network utilization is low. In
the case of infeasiblity, we save the state of the context with
the highest number of solved flows. Hence, even if the whole
set of flows was not schedulable, we still provide a partial
solution for a subset of the given flows.

6.1 Optimization
SMT solvers return the first encountered valid solution,

if one exists, for the given context out of the set of (po-
tentially) multiple solutions. Scheduling solutions, like the
one presented here, would benefit even more if at the same

time the provided solution is optimized with respect to cer-
tain properties of the system. Optimization solvers, like
Gurobi [16] or GLPK [15], are explicitly designed to solve
constrained optimization problems and can be used to tackle
optimized scheduling (cf. [8] for an example). In recent
years, a new field, called Optimization Modulo Theories
(OMT), has emerged where certain SMT solvers are aug-
mented with optimization capabilities [5, 24, 30]. A typical
optimization objective used in industry is minimizing end-
to-end latency of selected flows. The minimization objec-
tive is easily expressed based on constraint (3) from Sec-
tion 4.2 and has been discussed in previous work (cf. [8]).
Here, we focus on optimization opportunities arising from
the specifics of IEEE 802.1Qbv.

In the presented method we have seen how scheduled flows
are isolated either in the time domain or in different queues
in order to avoid interleaving. Scheduling along the time
domain is constrained by the end-to-end latency require-
ments and periods of the set of flows, while the selection of
queues is limited by the device capacity and the necessity to
integrate other traffic classes. We have also seen that non-
scheduled flows, may benefit from a larger number of pri-
ority queues in the post-analysis step. On the other hand,
a small number of scheduled queues available to scheduled
flows, reduces the solution space due to the rather stringent
isolation constraints (cf. constraints (4) and (5)). Hence,
any pre-assignment of queues to traffic classes introduces a
trade-off between schedulability of high-criticality flows and
timeliness properties and flexibility for non-scheduled traffic.

The inclusion of optimization, however, opens up alter-
native design space exploration mechanisms. Therefore, we
propose an optimization objective to find the minimal num-
ber of queues required for scheduled traffic such that a valid
solution is still feasible (i.e. schedulability is guaranteed).
This number represents a design input for the assignment
of queues to traffic classes on a per-device basis. The opti-
mization condition is easy to express using our approach
by having an additional variable ([va, vb].κ) for each de-
vice representing the number of required scheduled queues
for high-criticality flows for each egress port. Minimizing
the number of used queues can be specified in different
ways depending on the OMT implementation and design
goals. We define a global objective to minimize the ac-
crued sum of the number of queues used per egress port, i.e.,
minimize

∑
[va,vb]∈L

[va, vb].κ. Complementary, OMT solvers

like Z3 (v4.4.1) offer the possibility to incorporate multi-
ple different objectives either optimized independently or
combined using Pareto fronts or lexicographic priorities [5].
Thus, additionally to the constraints defined in Section 4.1
and 802.1Qbv constraint (6), we add, ∀[va, vb] ∈ L

minimize [va, vb].κ

subject to [va, vb].κ ≤ [va, vb].c,

s
[va,vb]
i .p ≤ [va, vb].κ, ∀s[va,vb]i ∈ S.

In this case the solution given by the solver will not only
return a valid schedule (in terms of frame offsets and queue
assignments per device) but also the minimum number of
queues per device/port which are required to fulfil the com-
puted schedule for high-criticality flows. The remaining
queues are then guaranteed to optimize the trade-off for
non-scheduled flows. As can be seen, there is no assump-
tion on the value of [va, vb].c which represents the maximum

10 ms

1 sec

1 min

30 min

4 h

5(40) 15(144) 25(238)

ru
n

ti
m

e

Number of flows (Average number of frame instances)

P1={10, 20}[ms]
P2={10, 25, 50, 100}[ms]
P3={5, 10, 200, 500}[ms]

(a) Simple topology (3 ES, 1 SW)

10 ms

1 sec

1 min

30 min

4 h

5(52) 25(310) 50(641)

ru
n

ti
m

e

Number of flows (Average number of frame instances)

P1={10, 20}[ms]
P2={10, 25, 50, 100}[ms]
P3={5, 10, 200, 500}[ms]

(b) Medium topology (5 ES, 2 SW)

10 ms

1 sec

1 min

30 min

4 h

10(125) 50(738) 100(1490)

ru
n

ti
m

e

Number of flows (Average number of frame instances)

P1={10, 20}[ms]
P2={10, 25, 50, 100}[ms]
P3={5, 10, 200, 500}[ms]

(c) Complex topology (7 ES, 5 SW)

Figure 4: Runtime with varying number of flows and periods and different network topologies.

number of queues. We can therefore also reformulate the
optimization problem in terms of design space exploration,
i.e., given an unschedulable system, what is the minimum
number of queues in each device/port that are necessary in
order for the problem to become schedulable.

7. EXPERIMENTS
For the experimental evaluation we use the Z3 v4.4.1

solver (64bit) [10] which features algorithms for solving lin-
ear optimization objectives in addition to the normal SMT
functionality [5]. We reproduced additionally several tests
without optimization with Yices v2.4.2 (64bit) [13] using
quantifier-free linear integer arithmetic (LA(Z)) as the back-
ground theory. Since we observe similar trends as in the Z3
experiments and a comparison of SMT solvers is outside the
scope of this paper, we omit the evaluation with Yices and
concentrate on Z3. All experiments were run on a 64bit
4-core3 3.40GHz Intel Core-i7 PC with 4GB memory.

We analyze the scalability and schedulability aspects of
our methods over a number of synthetic configurations on
top of three predefined network topologies ranging from 3
end-systems connected to one switch to 7 end-systems con-
nected through 5 switches (via 1Gbit/s links with a 1µsec
macrotick granularity). We set the time-out value for a run
to 5 hours. As shown in [8], a higher utilization of the net-
work links results in a more difficult problem set for the
SMT solver. Hence, we keep the size of the topologies rela-
tive small in comparison to the number of flows (and frames)
in order to achieve a higher utilization on the links.

In the first set of experiments (Figure 4) we show the scal-
ability of the frame isolation method (using the incremental
backtracking implementation with step size of 1 flow) when
varying the problem set in 3 dimensions, namely in topol-
ogy size, number of flows and flow periods (chosen randomly
from 3 sets of predefined periods). The configuration we use
for the scalability tests is {Ve+s, 〈8, 8, 0〉}, the data size for
each flow is chosen uniformly between 2 and 8 MTU-sized
frames, and the senders and receivers of the flows are also
chosen randomly from the set of end-systems in the network.

The logarithmic y-axis shows the runtime and the x-axis
the number of flows and average number of frames scheduled.
We observe that the period set has a significant impact on
the scalability, i.e. a more complex relationship between the
periods of the flows, and hence, a higher hyperperiod, results

3Note that the current implementation of Z3 (and Yices)
does not take advantage of the multi-core nature of the CPU
as it runs in a single core.

0

20

40

60

80

100

sim
p
le/P

1
/5

sim
p
le/P

2
/5

sim
p
le/P

3
/5

sim
p
le/P

1
/1

5
sim

p
le/P

2
/1

5
sim

p
le/P

3
/1

5
sim

p
le/P

1
/2

5
sim

p
le/P

2
/2

5
sim

p
le/P

3
/2

5
m

ed
iu

m
/P

1
/5

m
ed

iu
m

/P
2
/5

m
ed

iu
m

/P
3
/5

m
ed

iu
m

/P
1
/2

5
m

ed
iu

m
/P

2
/2

5
m

ed
iu

m
/P

3
/2

5
m

ed
iu

m
/P

1
/5

0
m

ed
iu

m
/P

2
/5

0
m

ed
iu

m
/P

3
/5

0
co

m
p
lex

/P
1
/1

0
co

m
p
lex

/P
2
/1

0
co

m
p
lex

/P
3
/1

0
co

m
p
lex

/P
1
/5

0
co

m
p
lex

/P
2
/5

0
co

m
p
lex

/P
3
/5

0
co

m
p
lex

/P
1
/1

0
0

co
m

p
lex

/P
2
/1

0
0

co
m

p
lex

/P
3
/1

0
0

M
1
 o

v
er

 M
2
 r

ed
u
ct

io
n
 [

%
] M1 runtime as percentage of M2 runtime

Runtime reduction through M1

Figure 5: Flow vs. frame isolation runtime comparison.

in significantly higher runtime of the algorithm. As is to be
expected with NP-complete problems, the runtime increases
exponentially with an increase in the number of flows and
frames that have to be scheduled. For e.g., using the com-
plex topology (Figure 4(c)), we schedule 10 flows with 118
frame instances and period configuration P1 in under 1 sec
while scheduling 100 flows with 1394 frame instances and
with period configuration P3 takes over 4 hours to solve.

Figure 5 shows the reduction of the runtime when using
the flow isolation approach as a percentage of the runtime
of the frame isolation method for each of the above inputs.
Using the flow isolation method, we expect on average a re-
duced runtime of the scheduler at the expense of schedulabil-
ity. We replicating the above experiments using the flow iso-
lation (constraint (4)) method, denoted by M1 in Figure 5,
instead of the frame isolation constraint (constraint (5)), de-
noted by M2. As can be seen, in these experiments the flow
isolation method is always faster than the frame isolation
approach. In order to confirm the trend, we have run addi-
tional experiments with 381 randomly generated test cases
varying between the 3 topologies and period sets presented
above and with up to 1000 flows and data sizes from 500
up to 8000 bytes. Out of these, 17 reached the time-out
of 5 hours with either M24 or with both methods and were
deemed infeasible. For the remaining 336 inputs, M1 was on
average 13% faster than M2 with a median of 8.03%. The
accumulated runtime of all successful runs was around 36.7
hours for M1 and just over 59 hours for M2, which amounts
to a 30.73% improvement.

4In some isolated cases, the frame isolation method timed
out while the flow isolation found a solution within minutes.

100 ms

1 sec

10 sec

1 min

10 min

ru
n
ti

m
e

Flow isolation
Frame isolation

Optimized Flow isolation
Optimized Frame isolation

1

2

3

T
01

T
02

T
03

T
04

T
05

T
06

T
07

T
08

T
09

T
10

T
11

T
12

T
13

T
14

T
15

T
16

T
17

T
18

T
19

T
20

q
u
eu

es

Flow isolation Frame isolation

Figure 6: Flow vs. frame isolation w/ and w/o optimization.

Although in some cases the flow isolation method reduces
the execution time significantly and may generally be prefer-
able to the frame isolation approach (e.g. if schedulability
is not likely to be an issue), it brings mostly moderate (lin-
ear) improvements in runtime, especially in relation to the
exponential nature of the problem.

For the schedulability tests we generate random test cases
with either simple, medium or complex topologies and with
3, 4 or 5 flows. The periods of the flows are chosen randomly
between two different orders of magnitude, i.e., one set of pe-
riods is {1ms, 2ms, 3ms, 5ms, 10ms}, while the others have
values from the set {100µsec, 150µsec, 200µsec, 500µsec}.
We scale the number of frames per flow accordingly, i.e.
flows with periods over 1ms have 10, 20, 40, 60 or 100
frames per stream and high-rate flows have either 1 or 2
frames. Through this, we try to generate the scenario de-
scribed in Section 4.2 in which frames of different flows
have to interleave if scheduled in the same egress queue.
In Figure 6 we show the runtime of the scheduler with and
without optimization objectives using both flow and frame
isolation methods. As optimization objective we minimize
the accrued sum of the number of queues used per egress
port, therefore, aiming at the lowest overall number of re-
quired queues per egress port. From all randomly generated
test cases we selected 20 for which the minimum number of
queues required was different between the flow and frame
isolation methods. In order to obtain a global minimum, we
schedule all flows at once (i.e. without incremental steps)
when using optimization. For the non-optimized runs we
use the incremental version of our algorithm.

As expected, the runtime is generally higher when opti-
mizing regardless of whether we use flow or frame isolation
without optimization. In most cases, we observe that the
frame isolation method requires one single queue per egress
port for any device to satisfy the schedule while the flow iso-
lation method usually needs more than one queue in several
ports/devices. This also means that configurations 1 or 2
(defined in Section 5) would not render a feasible solution
using the flow isolation method due to the limited amount of
queues for high-criticality traffic flows. For some use-cases
(T05, T07, and T09), the flow isolation method requires 3
queues for some devices, while the frame isolation remains
at 1 queue per port for all devices. For other cases (T08,
T13, T17 and T20) the frame isolation method requires a
minimum of 2 queues for some ports (still less than the flow
isolation for the respective use-cases).

8. RELATED WORK
Scheduling critical traffic in deterministic networks using

SMT solvers was first proposed by Steiner in [33] and ex-
tended in our previous work [7, 8] to include scheduling of
preemptive tasks running on the end-system nodes. Schedul-
ing traffic with different criticality classes in TTEthernet
while optimizing the end-to-end delay of rate-constrained
flows has been studied in [36].

Scheduling problems, with and without optimization, for
other proprietary technologies like PROFINET, FlexRay,
and TTP have been address in [17, 18, 26, 37]. At the other
end of the spectrum, methods for determining worst-case
end-to-end latencies for non-scheduled networks (like AFDX
or AVB) have been developed for example in [4, 12, 14].
More recent approaches [9, 28] compute AVB worst case
traversal times using network calculus. A new asynchronous
traffic class is introduced in [31] within the context of TSN
where the goal is to offer compositional analysis capabili-
ties by maintaining the traffic pattern between egress ports
along the route. This approach considers standard AVB pri-
ority behaviour since it assumes that the timed gates of the
egress port queues are open at all times.

Meyer et al. [25] study the interference of time-triggered
communication on AVB traffic in TSN networks when syn-
chronous traffic is added to the credit-based shaper defined
in 802.1Qbv. The simulation framework presented in the
paper does not address the scheduling problem but assumes
that an already existing TT schedule is created under the
condition that TT frames circumvent the queues of the out-
put port and are selected by the credit-based shaper with
a higher priority than AVB streams. This approach as-
sumes non-standard-compliant 802.1Qbv capabilities of de-
vices combining a TTEthernet-like buffered approach with
the scheduled queue architecture of TSN.

Alderisi et al. [2] introduce a new type of traffic class with
real-time guarantees called Scheduled Traffic (ST) which
corresponds to our high-criticality class. Similar to [25], the
paper considers a strict isolation of the mechanisms handling
ST and AVB traffic to ensure non-interference. As opposed
to our approach, both papers view the scheduled or time-
triggered traffic class and the AVB class as fundamentally
dichotomic and hence the two classes need separate (and dif-
ferent) hardware mechanisms. Additionally, the authors do
not address the underlying scheduling problem introduced
by the timed gates of the priority queues.

To the best of our knowledge, this is the first study which
discusses the functional parameters of 802.1Qbv devices im-
pacting the capabilities to control the temporal behaviour of
flows and the resulting scheduling problem concerning the
timed gate functionality of egress ports for high-criticality
traffic.

9. CONCLUSION
In this work we addressed the scheduling problem aris-

ing from the IEEE 802.1Qbv extension on multi-hop fully
switched TSN networks, presenting several methods for com-
puting static schedules via Satisfiability Modulo Theories
(SMT). We identified key functional parameters affecting
the behaviour of 802.1Qbv communication and, based on a
generalized configuration of these parameters for real-time
traffic, we derived constraints for creating correct offline
schedules guaranteeing low and bounded jitter as well as de-
terministic end-to-end latencies for critical communication

flows. Furthermore, we discussed several optimization direc-
tions as well as concrete system configurations which open
up a number of trade-offs both at runtime as well as in the
design phase of the system. To demonstrate our approach,
we have performed an evaluation in terms of scalability and
schedulability via synthetic network workloads and system
configurations.

References
[1] Abraham, E., and Kremer, G. Satisfiability checking: The-

ory and applications. In Proc. SEFM (2016), vol. 9763 of
LNCS, Springer International Publishing.

[2] Alderisi, G., Patti, G., and Bello, L. L. Introducing
support for scheduled traffic over IEEE audio video bridging
networks. In Proc. ETFA (2013), IEEE Computer Society.

[3] Barrett, C., Sebastiani, R., Seshia, S., and Tinelli, C.
Satisfiability modulo theories. In Handbook of Satisfiability,
vol. 185. IOS Press, 2009.

[4] Bauer, H., Scharbarg, J., and Fraboul, C. Improving
the worst-case delay analysis of an AFDX network using
an optimized trajectory approach. Industrial Informatics,
IEEE Transactions on 6, 4 (2010).

[5] Bjørner, N., Phan, A., and Fleckenstein, L. νz - an
optimizing SMT solver. In Proc. TACAS (2015), Springer.

[6] Bordoloi, U. D., Aminifar, A., Eles, P., and Peng, Z.
Schedulability analysis of ethernet avb switches. In Proc.
RTCSA (2014), IEEE Computer Society.

[7] Craciunas, S. S., and Serna Oliver, R. SMT-based
task- and network-level static schedule generation for time-
triggered networked systems. In Proc. RTNS (2014), ACM.

[8] Craciunas, S. S., and Serna Oliver, R. Combined task-
and network-level scheduling for distributed time-triggered
systems. Real-Time Systems 52, 2 (2016), 161–200.

[9] De Azua, J. A. R., and Boyer, M. Complete modelling of
AVB in network calculus framework. In Proc. RTNS (2014),
ACM.

[10] De Moura, L., and Bjørner, N. Z3: An efficient SMT
solver. In Proc. TACAS (2008), Springer-Verlag.

[11] De Moura, L., and Bjørner, N. Satisfiability modulo the-
ories: Introduction and applications. Commun. ACM 54, 9
(2011), 69–77.

[12] Diemer, J., Thiele, D., and Ernst, R. Formal worst-case
timing analysis of ethernet topologies with strict-priority and
AVB switching. In Proc. SIES (2012), IEEE Computer So-
ciety.

[13] Dutertre, B. Yices 2.2. In Proc. CAV (2014), vol. 8559 of
Lecture Notes in Computer Science, Springer, pp. 737–744.

[14] Frances, F., Fraboul, C., and Grieu, J. Using network
calculus to optimize the AFDX network. In Proc. ERTS
(2006).

[15] GLPK. GNU Linear Programming Kit. http://www.gnu.
org/software/glpk/. retrieved 20-Jul-2016.

[16] Gurobi Optimization, I. Gurobi optimizer reference man-
ual, version 6.0, 2014. retrieved 12-Jan-2015.

[17] Hanzalek, Z., Burget, P., and Šucha, P. Profinet IO IRT
message scheduling. In Proc. ECRTS (2009), IEEE.

[18] Huang, J., Blech, J. O., Raabe, A., Buckl, C., and
Knoll, A. Static scheduling of a time-triggered network-on-
chip based on SMT solving. In Proc. DATE (2012), IEEE.

[19] Institute of Electrical and Electronics Engineers,
Inc. 802.1Qbv - Enhancements for Scheduled Traffic. http:
//www.ieee802.org/1/pages/802.1bv.html, 2016. Draft 3.1.

[20] Institute of Electrical and Electronics Engineers,
Inc. Time-Sensitive Networking Task Group. http://www.
ieee802.org/1/pages/tsn.html, 2016. retrieved 06-Jul-2016.

[21] Issuing Committee: As-2d2 Deterministic Ethernet
And Unified Networking. SAE AS6802 Time-Triggered
Ethernet. http://standards.sae.org/as6802/, 2011. retrieved
20-May-2014.

[22] Kopetz, H., and Bauer, G. The time-triggered architec-
ture. Proceedings of the IEEE 91, 1 (2003), 112–126.

[23] Kopetz, H., and Grunsteidl, G. TTP - a time-triggered
protocol for fault-tolerant real-time systems. In Proc. 23rd
IEEE International Symposium on Fault-Tolerant Comput-
ing (FTCS-23) (June 1993), pp. 524–533.

[24] Li, Y., Albarghouthi, A., Kincaid, Z., Gurfinkel, A.,
and Chechik, M. Symbolic optimization with SMT solvers.
SIGPLAN Not. 49, 1 (Jan. 2014).

[25] Meyer, P., Steinbach, T., Korf, F., and Schmidt, T.
Extending IEEE 802.1 AVB with time-triggered scheduling:
A simulation study of the coexistence of synchronous and
asynchronous traffic. In Proc. VNC (2013), IEEE Computer
Society.

[26] Pop, P., Eles, P., and Peng, Z. Schedulability-driven com-
munication synthesis for time triggered embedded systems.
Real-Time Syst. 26, 3 (2004), 297–325.

[27] Prytz, G. A performance analysis of EtherCAT and
PROFINET IRT. In Proc. ETFA (2008), IEEE Computer
Society.

[28] Queck, R. Analysis of ethernet AVB for automotive net-
works using network calculus. In Proc. ICVES (2012), IEEE
Computer Society.

[29] Sebastiani, R. Lazy satisfiability modulo theories. JSAT 3,
3-4 (2007), 141–224.

[30] Sebastiani, R., and Trentin, P. OptiMathSAT: A Tool
for Optimization Modulo Theories. In Proc. CAV (2015),
vol. 9206 of LNCS, Springer.

[31] Specht, J., and Samii, S. Urgency-based scheduler for
time-sensitive switched ethernet networks. In Proc. ECRTS
(2016), IEEE Computer Society.

[32] Steinbach, T., Lim, H.-T., Korf, F., Schmidt, T.,
Herrscher, D., and Wolisz, A. Tomorrow’s in-car inter-
connect? a competitive evaluation of IEEE 802.1 AVB and
Time-Triggered Ethernet (AS6802). In Proc. VTC (2012),
IEEE Computer Society.

[33] Steiner, W. An evaluation of SMT-based schedule synthe-
sis for time-triggered multi-hop networks. In Proc. RTSS
(2010), IEEE Computer Society.

[34] Steiner, W., Bauer, G., Hall, B., and Paulitsch, M.
TTEthernet: Time-Triggered Ethernet. In Time-Triggered
Communication, R. Obermaisser, Ed. CRC Press, Aug 2011.

[35] Steiner, W., and Dutertre, B. The TTEthernet synchro-
nisation protocols and their formal verification. Int. J. Crit.
Comput.-Based Syst. 4, 3 (2013).

[36] Tamas-Selicean, D., Pop, P., and Steiner, W. Synthesis
of communication schedules for TTEthernet-based mixed-
criticality systems. In Proc. CODES+ISSS (2012), ACM.

[37] Zeng, H., Zheng, W., Di Natale, M., Ghosal, A.,
Giusto, P., and Sangiovanni-Vincentelli, A. Schedul-
ing the flexray bus using optimization techniques. In Proc.
DAC (2009), ACM.

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/802.1bv.html
http://www.ieee802.org/1/pages/tsn.html
http://www.ieee802.org/1/pages/tsn.html
http://standards.sae.org/as6802/

	Introduction
	802.1Qbv Functional Parameters
	Network and Traffic Model
	Scheduling Constraints
	Basic Deterministic Ethernet Constraints
	802.1Qbv Constraints

	802.1Qbv Configurations
	802.1Qbv Scheduler
	Optimization

	Experiments
	Related Work
	Conclusion

